Theory of quasiparticle interference on the surface of a strong topological insulator


Abstract in English

Electrons on the surface of a strong topological insulator, such as Bi2Te3 or Bi1-xSnx, form a topologically protected helical liquid whose excitation spectrum contains an odd number of massless Dirac fermions. A theoretical survey and classification is given of the universal features, observable by the ordinary and spin-polarized scanning tunneling spectroscopy, in the interference patterns resulting from the quasiparticle scattering by magnetic and non-magnetic impurities in such a helical liquid. Our results confirm the absence of backscattering from non-magnetic impurities observed in recent experiments and predict new interference features, uniquely characteristic of the helical liquid, when the scatterers are magnetic.

Download