Do you want to publish a course? Click here

A tunable rf SQUID manipulated as flux and phase qubit

136   0   0.0 ( 0 )
 Added by A. V. Ustinov
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on two different manipulation procedures of a tunable rf SQUID. First, we operate this system as a flux qubit, where the coherent evolution between the two flux states is induced by a rapid change of the energy potential, turning it from a double well into a single well. The measured coherent Larmor-like oscillation of the retrapping probability in one of the wells has a frequency ranging from 6 to 20 GHz, with a theoretically expected upper limit of 40 GHz. Furthermore, here we also report a manipulation of the same device as a phase qubit. In the phase regime, the manipulation of the energy states is realized by applying a resonant microwave drive. In spite of the conceptual difference between these two manipulation procedures, the measured decay times of Larmor oscillation and microwave-driven Rabi oscillation are rather similar. Due to the higher frequency of the Larmor oscillations, the microwave-free qubit manipulation allows for much faster coherent operations.



rate research

Read More

158 - Hu Zhao , Tiefu Li , Jianshe Liu 2013
A phase-slip flux qubit, exactly dual to a charge qubit, is composed of a superconducting loop interrupted by a phase-slip junction. Here we propose a tunable phase-slip flux qubit by replacing the phase-slip junction with a charge-related superconducting quantum interference device (SQUID) consisting of two phase-slip junctions connected in series with a superconducting island. This charge-SQUID acts as an effective phase-slip junction controlled by the applied gate voltage and can be used to tune the energy-level splitting of the qubit. Also, we show that a large inductance inserted in the loop can reduce the inductance energy and consequently suppress the dominating flux noise of the phase-slip flux qubit. This enhanced phase-slip flux qubit is exactly dual to a transmon qubit.
We experimentally demonstrate the coherent oscillations of a tunable superconducting flux qubit by manipulating its energy potential with a nanosecond-long pulse of magnetic flux. The occupation probabilities of two persistent current states oscillate at a frequency ranging from 6 GHz to 21 GHz, tunable via the amplitude of the flux pulse. The demonstrated operation mode allows to realize quantum gates which take less than 100 ps time and are thus much faster compared to other superconducting qubits. An other advantage of this type of qubit is its insensitivity to both thermal and magnetic field fluctuations.
We discuss the response of an rf-SQUID formed by anomalous Josephson junctions embedded in a superconducting ring with a non-negligible inductance. We demonstrate that a properly sweeping in-plane magnetic field can cause both the total flux and the current circulating in the device to modulate and to behave hysteretically. The bistable response of the system is analyzed as a function of the anomalous phase shift at different values of the screening parameter, in order to highlight the parameter range within which a hysteretic behavior can be observed. The magnetic flux piercing the SQUID ring is demonstrated to further modulate the hysteretical response of the system. Moreover, we show that the anomalous phase shift can be conveniently determined through the measurement of the out-of-plane magnetic field at which the device switches to the voltage state and the number of trapped flux quanta changes. Finally, we compare the response of two different device configurations, namely, a SQUID including only one or two anomalous junctions. In view of these results, the proposed device can be effectively used to detect and measure the anomalous Josephson effect.
We demonstrate coherent tunable coupling between a superconducting phase qubit and a lumped element resonator. The coupling strength is mediated by a flux-biased RF SQUID operated in the non-hysteretic regime. By tuning the applied flux bias to the RF SQUID we change the effective mutual inductance, and thus the coupling energy, between the phase qubit and resonator . We verify the modulation of coupling strength from 0 to $100 MHz$ by observing modulation in the size of the splitting in the phase qubits spectroscopy, as well as coherently by observing modulation in the vacuum Rabi oscillation frequency when on resonance. The measured spectroscopic splittings and vacuum Rabi oscillations agree well with theoretical predictions.
Superconducting devices based on the Josephson effect are effectively used for the implementation of qubits and quantum gates. The manipulation of superconducting qubits is generally performed by using microwave pulses with frequencies from 5 to 15 GHz, obtaining a typical operating clock from 100MHz to 1GHz. A manipulation based on simple pulses in the absence of microwaves is also possible. In our system a magnetic flux pulse modifies the potential of a double SQUID qubit from a symmetric double well to a single deep well condition. By using this scheme with a Nb/AlOx/Nb system we obtained coherent oscillations with sub-nanosecond period (tunable from 50ps to 200ps), very fast with respect to other manipulating procedures, and with a coherence time up to 10ns, of the order of what obtained with similar devices and technologies but using microwave manipulation. We introduce the ultrafast manipulation presenting experimental results, new issues related to this approach (such as the use of a feedback procedure for cancelling the effect of slow fluctuations), and open perspectives, such as the possible use of RSFQ logic for the qubit control.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا