We prove thatthe Banach space $(oplus_{n=1}^infty ell_p^n)_{ell_q}$, which is isomorphic to certain Besov spaces, has a greedy basis whenever $1leq p leqinfty$ and $1<q<infty$. Furthermore, the Banach spaces $(oplus_{n=1}^infty ell_p^n)_{ell_1}$, with $1<ple infty$, and $(oplus_{n=1}^infty ell_p^n)_{c_0}$, with $1le p<infty$ do not have a greedy bases. We prove as well that the space $(oplus_{n=1}^infty ell_p^n)_{ell_q}$ has a 1-greedy basis if and only if $1leq p=qle infty$.