Do you want to publish a course? Click here

Nucleon form factors from high statistics mixed-action calculations with 2+1 flavors

196   0   0.0 ( 0 )
 Added by Wolfram Schroers
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We present new high-statistics results for nucleon form factors at pion masses of approximately 290, 350, 500, and 600 MeV using a mixed action of domain wall valence quarks on an improved staggered sea. We perform chiral fits to both vector and axial form factors and compare our results to experiment.



rate research

Read More

We present high statistics results for the structure of the nucleon from a mixed-action calculation using 2+1 flavors of asqtad sea and domain wall valence fermions. We perform extrapolations of our data based on different chiral effective field theory schemes and compare our results with available information from phenomenology. We discuss vector and axial form factors of the nucleon, moments of generalized parton distributions, including moments of forward parton distributions, and implications for the decomposition of the nucleon spin.
Using the MILC 2+1 flavor asqtad quark action ensembles, we are calculating the form factors $f_0$ and $f_+$ for the semileptonic $B_s rightarrow K ell u$ decay. A total of six ensembles with lattice spacing from $approx0.12$ to 0.06 fm are being used. At the coarsest and finest lattice spacings, the light quark mass $m_l$ is one-tenth the strange quark mass $m_s$. At the intermediate lattice spacing, the ratio $m_l/m_s$ ranges from 0.05 to 0.2. The valence $b$ quark is treated using the Sheikholeslami-Wohlert Wilson-clover action with the Fermilab interpretation. The other valence quarks use the asqtad action. When combined with (future) measurements from the LHCb and Belle II experiments, these calculations will provide an alternate determination of the CKM matrix element $|V_{ub}|$.
117 - Takeshi Yamazaki 2009
We report our numerical lattice QCD calculations of the isovector nucleon form factors for the vector and axialvector currents: the vector, induced tensor, axialvector, and induced pseudoscalar form factors. The calculation is carried out with the gauge configurations generated with N_f=2+1 dynamical domain wall fermions and Iwasaki gauge actions at beta = 2.13, corresponding to a cutoff 1/a = 1.73 GeV, and a spatial volume of (2.7 fm)^3. The up and down quark masses are varied so the pion mass lies between 0.33 and 0.67 GeV while the strange quark mass is about 12% heavier than the physical one. We calculate the form factors in the range of momentum transfers, 0.2 < q^2 < 0.75 GeV^2. The vector and induced tensor form factors are well described by the conventional dipole forms and result in significant underestimation of the Dirac and Pauli mean-squared radii and the anomalous magnetic moment compared to the respective experimental values. We show that the axialvector form factor is significantly affected by the finite spatial volume of the lattice. In particular in the axial charge, g_A/g_V, the finite volume effect scales with a single dimensionless quantity, m_pi L, the product of the calculated pion mass and the spatial lattice extent. Our results indicate that for this quantity, m_pi L > 6 is required to ensure that finite volume effects are below 1%.
We present progress made by the Hadron Spectrum Collaboration (HSC) in determining the tower of excited nucleon states using 2+1-flavor anisotropic clover lattices. The HSC has been investigating interpolating operators projected into irreducible representations of the cubic group in order to better calculate two-point correlators for nucleon spectroscopy; results are published for quenched and 2-flavor anisotropic Wilson lattices. In this work, we present the latest results using a new technique, distillation, which allows us to reach higher statistics than before. Future directions will be outlined at the end.
We present updated results on the nucleon electromagnetic form factors and axial coupling calculated using CLS ensembles with $N_mathrm{f}=2+1$ dynamical flavours of Wilson fermions. The measurements are performed on large, fine lattices with a pseudoscalar mass reaching down to 200 MeV. The truncated-solver method is employed to reduce the variance of the measurements. Estimation of the matrix elements is challenging due to large contamination from excited states and further investigation is necessary to bring these effects under control.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا