Do you want to publish a course? Click here

Large increase of the Curie temperature by orbital ordering control

165   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English
 Authors Aymeric Sadoc




Ask ChatGPT about the research

Using first principle calculations we showed that the Curie temperature of manganites thin films can be increased by far more than an order of magnitude by applying appropriate strains. Our main breakthrough is that the control of the orbital ordering responsible for the spectacular $T_C$ increase cannot be imposed by the substrate only. Indeed, the strains, first applied by the substrate, need to be maintained over the growth direction by the alternation of the manganite layers with another appropriate material. Following these theoretical findings, we synthesized such super-lattices and verified our theoretical predictions.



rate research

Read More

The wavefuntion of conduction electrons moving in the background of a non-coplanar spin structure can gain a quantal phase - Berry phase - as if the electrons were moving in a strong fictitious magnetic field. Such an emergent magnetic field effect is approximately proportional to the solid angle subtended by the spin moments on three neighbouring spin sites, termed the scalar spin chirality. The entire spin chirality of the crystal, unless macroscopically canceled, causes the geometrical Hall effect of real-space Berry-phase origin, whereas the intrinsic anomalous Hall effect (AHE) in a conventional metallic ferromagnet is of the momentum-space Berry-phase origin induced by relativistic spin-orbit coupling (SOC). Here, we report the ordering phenomena of the spin-trimer scalar spin chirality and the consequent large geometrical Hall effect in the breathing kagome lattice compound Dy$_3$Ru$_4$Al$_{12}$, where the Dy$^{3+}$ moments form non-coplanar spin trimers with local spin chirality. Using neutron diffraction, we show that the local spin chirality of the spin trimers as well as its ferroic/antiferroic orders can be switched by an external magnetic field, accompanying large changes in the geometrical Hall effect. Our finding reveals that systems composed of tunable spin trimers can be a fertile field to explore large emergent electromagnetic responses arising from real-space topological magnetic orders.
The Mott insulating perovskite KCuF3 is considered the archetype of an orbitally-ordered system. By using the LDA+dynamical mean-field theory (DMFT) method, we investigate the mechanism for orbital-ordering (OO) in this material. We show that the purely electronic Kugel-Khomskii super-exchange mechanism (KK) alone leads to a remarkably large transition temperature of T_KK about 350 K. However, orbital-order is experimentally believed to persist to at least 800 K. Thus Jahn-Teller distortions are essential for stabilizing orbital-order at such high temperatures.
We show for the system La1-xCexCoO3 (0.1 <= x <= 0.4) that it is possible to synthesize electron-doped cobaltites by the growth of epitaxial thin films. For La1-xCexCoO3, ferromagnetic order is observed within the entire doping range (with the maximum of the Curie temperature, Tc, at x ca. 0.3), resulting in a magnetic phase diagram similar to that of hole-doped lanthanum cobaltites. The measured spin values strongly suggest an intermediate-spin state of the Co ions which has been also found in the hole-doped system. In contrast to the hole-doped material, however, where Tc is well above 200 K, we observe a strong suppression of the maximum Tc to about 22 K. This is likely to be caused by a considerable decrease of the Co3d - O2p hybridization. The observed intriguing magnetic properties are in agreement with previously reported theoretical results.
An electronic effect on a macroscopic domain structure is found in a strongly correlated half-doped manganite film Nd$_{0.5}$Sr$_{0.5}$MnO3 grown on a (011) surface of SrTiO3. The sample has a high-temperature (HT) phase free from distortion above 180K and two low-temperature (LT) phases with a large shear-mode strain and a concomitant twin structure. One LT phase has a large itinerancy (A-type), and the other has a small itinerancy (CE-type), while the lattice distortions they cause are almost equal. Our x ray diffraction measurement shows that the domain size of the LT phase made by the HT-CE transition is much smaller than that by the HT-A transition, indicating that the difference in domain size is caused by the electronic states of the LT phases.
Several spin systems with low dimensionality develop a spin-dimer phase within a molecular orbital below TS, competing with long-range antiferromagnetic order. Very often, preferential orbital occupancy and ordering are the actual driving force for dimerization, as in the so-called orbitally-driven spin-Peierls compounds (MgTi2O4, CuIr2S4, La4Ru2O10, NaTiSi2O6, etc.). Through a microscopic analysis of the thermal conductivity k (T) in La4Ru2O10, we show that the orbital occupancy fluctuates rapidly above TS, resulting in an orbital-liquid state. The strong orbital-lattice coupling introduces dynamic bond-length fluctuations that scatter the phonons to produce a k (T) proportional to T (i.e. glass-like) above TS. This phonon-glass to phonon-crystal transition is shown to occur in other spin-dimer systems, like NaTiSi2O6, pointing to a general phenomenon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا