Do you want to publish a course? Click here

Relic density at one-loop with gauge boson pair production

84   0   0.0 ( 0 )
 Added by Guillaume Chalons
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We have computed the full one-loop corrections (electroweak as well as QCD) to processes contributing to the relic density of dark matter in the MSSM where the LSP is the lightest neutralino. We cover scenarios where the most important channels are those with gauge boson pair production. This includes the case of a bino with some wino admixture, a higgsino and a wino. In this paper we specialise to the case of light dark matter much below the TeV scale. The corrections can have a non-negligible impact on the predictions and should be taken into account in view of the present and forthcoming increasing precision on the relic density measurements. Our calculations are made with the help of SloopS, an automatic tool for the calculation of one-loop processes in the MSSM. The renormalisation scheme dependence of the results as concerns $tgb$ is studied.



rate research

Read More

109 - N. Baro , G. Chalons , Sun Hao 2009
We present a complete calculation of the electroweak one-loop corrections to the relic density within the MSSM framework. In the context of the neutralino as dark matter candidate, we review different scenarios of annihilation and coannihilation with a chargino. In particular we investigate predictions for the annihilation into gauge boson pairs for different kinds of neutralino: bino-, wino- and higgsino-like. We present some interesting effects which are not present at tree-level and show up at one-loop. To deal with the large number of diagrams occuring in the calculations, we have developed an automatic tool for the computation at one-loop of any process in the MSSM. We have implemented a complete on-shell gauge invariant renormalization scheme, with the possibility of switching to other schemes. We emphasize the variations due to the choice of the renormalization scheme, in particular the one-loop definition of the parameter tan(beta).
We analyse the loop induced production of Higgs boson pairs at future high--energy $e^+e^-$ colliders, both in the Standard Model and in its minimal supersymmetric extension. The cross sections for Standard Model Higgs pair production through $W/Z$ boson loops, $ee ra H^0 H^0$, are rather small but the process could be visible for high enough luminosities, especially if longitudinal polarization is made available. In the Minimal Supersymmetric Standard Model, the corresponding processes of CP--even or CP--odd Higgs boson pair production, $ee ra hh, HH, Hh$ and $ee ra AA$ have smaller cross sections, in general. The additional contributions from chargino/neutralino and slepton loops are at the level of a few percent in most of the supersymmetric parameter space.
111 - Le Duc Ninh 2016
Weak gauge boson pair production is an important process at the LHC because it probes the non-Abelian structure of electroweak interactions and it is a background process for many new physics searches, and with enough statistics we can perform comparisons between measurements and theoretical calculations for different but correlated observables. In these proceedings, we present a theoretical status including state-of-the-art results from recent calculations of higher-order QCD and electroweak corrections.
Inclusive Higgs boson pair production through the mechanism of gauge boson fusion e^{+} e^{-} -> V* V* -> h h + X (V=W,Z) in the general Two-Higgs-Doublet Model (2HDM), with h=h^0,H^0,A^0,H^{pm}, is analyzed at order alpha^4_{ew} in the linear colliders ILC and CLIC. This kind of processes is highly sensitive to the trilinear Higgs (3H) boson self-interactions and hence can be a true keystone in the reconstruction of the Higgs potential. For example, in the ILC at 1 TeV, the most favorable scenarios yield cross-sections up to roughly 1 pb, thus entailing 10^5 events per 100 fb^{-1} of integrated luminosity, whilst remaining fully consistent with the perturbativity and unitarity bounds on the 3H couplings, the electroweak precision data and the constraints from BR(b->sgamma). Comparing with other competing mechanisms, we conclude that the Higgs boson-pair events could be the dominant signature for Higgs-boson production in the TeV-class linear colliders for a wide region of the 2HDM parameter space, with no counterpart in the Minimal Supersymmetric Standard Model. Owing to the extremely clean environment of these colliders, inclusive 2H events should allow a comfortable tagging and might therefore open privileged new vistas into the structure of the Higgs potential.
We search for signatures of the extra neutral gauge boson $ Z^prime$, predicted in some extensions of the Standard Model, from the analysis of some distributions for $p + p longrightarrow mu^+ + mu^- + X$, where the only exotic particle involved is $ Z^prime$. In addition to the invariant mass and charge asymmetry distributions, we propose in our search to use the transverse momentum distribution ($p_T$) as an observable. We do our calculation for two values of the LHC center of mass energy (7 and 14 TeV), corresponding to 1 and 100 fb$^{-1}$ of luminosity, in order to compare our findings from some models with the distributions following from the Standard Model. By applying convenient cuts in the invariant mass, we show that the final particles $p_T$ distributions can reveal the presence of an extra neutral gauge boson contribution. We also claim that it is possible to disentangle the models considered here and we emphasize that the minimal version of the model, based on ${SU (3)_C times SU (3)_L times U (1)_X}$ symmetry, presents the more clear signatures for $ Z^prime$ existence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا