Do you want to publish a course? Click here

Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators

105   0   0.0 ( 0 )
 Added by Yu-Xi Liu
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The observation of quantized nanomechanical oscillations by detecting femtometer-scale displacements is a significant challenge for experimentalists. We propose that phonon blockade can serve as a signature of quantum behavior in nanomechanical resonators. In analogy to photon blockade and Coulomb blockade for electrons, the main idea for phonon blockade is that the second phonon cannot be excited when there is one phonon in the nonlinear oscillator. To realize phonon blockade, a superconducting quantum two-level system is coupled to the nanomechanical resonator and is used to induce the phonon self-interaction. Using Monte Carlo simulations, the dynamics of the induced nonlinear oscillator is studied via the Cahill-Glauber $s$-parametrized quasiprobability distributions. We show how the oscillation of the resonator can occur in the quantum regime and demonstrate how the phonon blockade can be observed with currently accessible experimental parameters.



rate research

Read More

We analyze the quantum information processing capability of a superconducting transmon circuit used to mediate interactions between quantum information stored in a collection of phononic crystal cavity resonators. Having only a single processing element to be controlled externally makes this approach significantly less hardware-intensive than traditional architectures with individual control of each qubit. Moreover, when compared with the commonly considered alternative approach using coplanar waveguide or 3d cavity microwave resonators for storage, the nanomechanical resonators offer both very long lifetime and small size -- two conflicting requirements for microwave resonators. A detailed gate error analysis leads to an optimal value for the qubit-resonator coupling rate as a function of the number of mechanical resonators in the system. For a given set of system parameters, a specific amount of coupling and number of resonators is found to optimize the quantum volume, an approximate measure for the computational capacity of a system. We see this volume is higher in the proposed hybrid nanomechanical architecture than in the competing on-chip electromagnetic approach.
We propose and experimentally demonstrate a technique for coupling phonons out of an optomechanical crystal cavity. By designing a perturbation that breaks a symmetry in the elastic structure, we selectively induce phonon leakage without affecting the optical properties. It is shown experimentally via cryogenic measurements that the proposed cavity perturbation causes loss of phonons into mechanical waves on the surface of silicon, while leaving photon lifetimes unaffected. This demonstrates that phonon leakage can be engineered in on-chip optomechanical systems. We experimentally observe large fluctuations in leakage rates that we attribute to fabrication disorder and verify this using simulations. Our technique opens the way to engineering more complex on-chip phonon networks utilizing guided mechanical waves to connect quantum systems.
We present a scheme for tuning and controlling nano mechanical resonators by subjecting them to electrostatic gradient fields, provided by nearby tip electrodes. We show that this approach enables access to a novel regime of optomechanics, where the intrinsic nonlinearity of the nanoresonator can be explored. In this regime, one or several laser driven cavity modes coupled to the nanoresonator and suitably adjusted gradient fields allow to control the motional state of the nanoresonator at the single phonon level. Some applications of this platform have been presented previously [New J. Phys. 14, 023042 (2012), Phys. Rev. Lett. 110, 120503 (2013)]. Here, we provide a detailed description of the corresponding setup and its optomechanical coupling mechanisms, together with an in-depth analysis of possible sources of damping or decoherence and a discussion of the readout of the nanoresonator state.
We consider a nanomechanical analogue of a nonlinear interferometer, consisting of two parallel, flexural nanomechanical resonators, each with an intrinsic Duffing nonlinearity and with a switchable beamsplitter-like coupling between them. We calculate the precision with which the strength of the nonlinearity can be estimated and show that it scales as $1/n^{3/2}$, where $n$ is the mean phonon number of the initial state. This result holds even in the presence of dissipation, but assumes the ability to make measurements of the quadrature components of the nanoresonators.
118 - J. Atalaya , A. Isacsson , 2010
We study resonant response of an underdamped nanomechanical resonator with fluctuating frequency. The fluctuations are due to diffusion of molecules or microparticles along the resonator. They lead to broadening and change of shape of the oscillator spectrum. The spectrum is found for the diffusion confined to a small part of the resonator and where it occurs along the whole nanobeam. The analysis is based on extending to the continuous limit, and appropriately modifying, the method of interfering partial spectra. We establish the conditions of applicability of the fluctuation-dissipation relations between the susceptibility and the power spectrum. We also find where the effect of frequency fluctuations can be described by a convolution of the spectra without these fluctuations and with them as the only source of the spectral broadening.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا