Do you want to publish a course? Click here

Presolar Diamond in Meteorites

108   0   0.0 ( 0 )
 Added by Sachiko Amari
 Publication date 2009
  fields Physics
and research's language is English
 Authors Sachiko Amari




Ask ChatGPT about the research

Presolar diamond, the carrier of the isotopically anomalous Xe component Xe-HL, was the first mineral type of presolar dust that was isolated from meteorites. The excesses in the light, p-process only isotopes 124Xe and 126Xe, and in the heavy, r-process only isotopes 134Xe and 136Xe relative to the solar ratios indicate that Xe-HL was produced in supernovae: they are the only stellar source where these two processes are believed to take place. Although these processes occur in supernovae, their physical conditions and timeframes are completely different. Yet the excesses are always correlated in diamond separates from meteorites. Furthermore, the p-process 124Xe/126Xe inferred from Xe-L and the r-process 134Xe/136Xe from Xe-H do not agree with the p-process and r-process ratios derived from the solar system abundance, and the inferred p-process ratio does not agree with those predicted from stellar models. The rapid separation scenario, where the separation of Xe and its radiogenic precursors Te and I takes place at the very early stage (7900 sec after the end of the r-process), has been proposed to explain Xe-H. Alternatively, mixing of 20% of material that experienced neutron burst and 80% of solar material can reproduce the pattern of Xe-H, although Xe-L is not accounted for with this scenario.



rate research

Read More

The main carrier of primordial heavy noble gases in chondrites is thought to be an organic phase, known as phase Q, whose precise characterization has resisted decades of investigation. Indirect techniques have revealed that phase Q might be composed of two subphases, one of them associated with sulfide. Here we provide experimental evidence that noble gases trapped within meteoritic sulfides present chemically- and thermally-driven behavior patterns that are similar to Q-gases. We therefore suggest that phase Q is likely composed of two subcomponents: carbonaceous phases and sulfides. In situ decay of iodine at concentrations levels consistent with those reported for meteoritic sulfides can reproduce the 129Xe excess observed for Q-gases relative to fractionated Solar Wind. We suggest that the Q-bearing sulfides formed at high temperature and could have recorded the conditions that prevailed in the chondrule-forming region(s).
On the 27th of November 2015, at 10:43:45.526 UTC, a fireball was observed across South Australia by ten Desert Fireball Network observatories lasting 6.1 s. A $sim37$ kg meteoroid entered the atmosphere with a speed of 13.68$pm0.09,mbox{km s}^{-1}$ and was observed ablating from a height of 85 km down to 18 km, having slowed to 3.28$pm0.21 ,mbox{km s}^{-1}$. Despite the relatively steep 68.5$^circ$ trajectory, strong atmospheric winds significantly influenced the darkfight phase and the predicted fall line, but the analysis put the fall site in the centre of Kati Thanda - Lake Eyre South. Kati Thanda has metres-deep mud under its salt-encrusted surface. Reconnaissance of the area where the meteorite landed from a low flying aircraft revealed a 60 cm circular feature in the muddy lake, less than 50 m from the predicted fall line. After a short search, which again employed light aircraft, the meteorite was recovered on the 31st December 2015 from a depth of 42 cm. Murrili is the first recovered observed fall by the digital Desert Fireball Network (DFN). In addition to its scientific value, connecting composition to solar system context via orbital data, the recover demonstrates and validates the capabilities of the DFN, with its next generation remote observatories and automated data reduction pipeline.
How simple organic matter appeared on Earth and the processes by which it transformed into more evolved organic compounds, which ultimately led to the emergence of life, is still an open topic. Different scenarios have been proposed, the main one assumes that simple organic compounds were synthesized, either in the gas phase or on the surfaces of dust grains, during the process of star formation, and were incorporated into larger bodies in the protoplanetary disk. Transformation of these simple organic compounds in more complex forms is still a matter of debate. Recent discoveries point out to catalytic properties of dust grains present in the early stellar envelope, which can nowadays be found in the form of chondrites. The huge infall of chondritic meteorites during the early periods of Earth suggests that the same reactions could have taken place in certain environments of the Earth surface, with conditions more favorable for organic synthesis. This work attempts the synthesis of simple organic molecules, such as hydrocarbons and alcohols, via Fischer-Tropsch Type reactions supported by different chondritic materials under early-Earth conditions, to investigate if organic synthesis can likely occur in this environment and which are the differences in selectivity when using different types of chondrites. Fischer-Tropsch-type reactions are investigated from mixtures of CO and H2 at 1 atm of pressure on the surfaces of different chondritic samples. The different products obtained are analyzed in situ by gas chromatography. Different Fischer-Tropsch reaction products are obtained in quantitative amounts. The formation of alkanes and alkenes being the main processes. Formation of alcohols also takes place in a smaller amount. Other secondary products were obtained in a qualitative way.
We report a NanoSIMS search for presolar grains in the CM chondrites Asuka (A) 12169 and A12236. We found 90 presolar O-rich grains and 25 SiC grains in A12169, giving matrix-normalized abundances of 275 (+55/-50, 1$sigma$) ppm or, excluding an unusually large grain, 236 (+37/-34) ppm for O-rich grains and 62 (+15/-12) ppm for SiC grains. For A12236, 18 presolar silicates and 6 SiCs indicate abundances of 58 (+18/-12) and 20 (+12/-8) ppm, respectively. The SiC abundances are in the typical range of primitive chondrites. The abundance of presolar O-rich grains in A12169 is essentially identical to that in CO3.0 Dominion Range 08006, higher than in any other chondrites, while in A12236 it is higher than found in other CMs. These abundances provide further strong support that A12169 and A12236 are the least-altered CMs as indicated by petrographic investigations. The similar abundances, isotopic distributions, silicate/oxide ratio, and grain sizes of the presolar O-rich grains found here to those of presolar grains in highly primitive CO, CR and ungrouped carbonaceous chondrites (CCs) indicate that the CM parent body(ies) accreted a similar population of presolar oxides and silicates in their matrices to those accreted by the parent bodies of the other CC groups. The lower abundances and larger grain sizes seen in some other CMs are thus most likely a result of parent-body alteration and not heterogeneity in nebular precursors. Presolar silicates are unlikely to be present in high abundances in returned samples from asteroids Ryugu and Bennu since remote-sensing data indicate that they have experienced substantial aqueous alteration.
The recovery of freshly fallen meteorites from tracked and triangulated meteors is critical to determining their source asteroid families. However, locating meteorite fragments in strewn fields remains a challenge with very few meteorites being recovered from the meteors triangulated in past and ongoing meteor camera networks. We examined if locating meteorites can be automated using machine learning and an autonomous drone. Drones can be programmed to fly a grid search pattern and take systematic pictures of the ground over a large survey area. Those images can be analyzed using a machine learning classifier to identify meteorites in the field among many other features. Here, we describe a proof-of-concept meteorite classifier that deploys off-line a combination of different convolution neural networks to recognize meteorites from images taken by drones in the field. The system was implemented in a conceptual drone setup and tested in the suspected strewn field of a recent meteorite fall near Walker Lake, Nevada.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا