Do you want to publish a course? Click here

Cross-relaxation and phonon bottleneck effects on magnetization dynamics in LiYF4:Ho3+

117   0   0.0 ( 0 )
 Added by Sylvain Bertaina
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Frequency and dc magnetic field dependences of dynamic susceptibility in diluted paramagnets LiYF$_4$:Ho$^{3+}$ have been measured at liquid helium temperatures in the ac and dc magnetic fields parallel to the symmetry axis of a tetragonal crystal lattice. Experimental data are analyzed in the framework of microscopic theory of relaxation rates in the manifold of 24 electron-nuclear sublevels of the lowest non-Kramers doublet and the first excited singlet in the Ho$^{3+}$ ground multiplet $^5I_8$ split by the crystal field of S$_4$ symmetry. The one-phonon transition probabilities were computed using electron-phonon coupling constants calculated in the framework of exchange charge model and were checked by optical piezospectroscopic measurements. The specific features observed in field dependences of the in- and out-of-phase susceptibilities (humps and dips, respectively) at the crossings (anti-crossings) of the electron-nuclear sublevels are well reproduced by simulations when the phonon bottleneck effect and the cross-spin relaxation are taken into account.



rate research

Read More

Temperature and magnetic field dependences of the 19F nuclear spin-lattice relaxation in a single crystal of LiYF4 doped with holmium are described by an approach based on a detailed consideration of the magnetic dipole-dipole interactions between nuclei and impurity paramagnetic ions and nuclear spin diffusion processes. The observed non-exponential long time recovery of the nuclear magnetization after saturation at intermediate temperatures is in agreement with predictions of the spin-diffusion theory in a case of the diffusion limited relaxation. At avoided level crossings in the spectrum of electron-nuclear states of the Ho3+ ion, rates of nuclear spin-lattice relaxation increase due to quasi-resonant energy exchange between nuclei and paramagnetic ions, in contrast to the predominant role played by electronic cross-relaxation processes in the low-frequency ac-susceptibility.
Employing time-resolved photoelectron spectroscopy we analyze the relaxation dynamics of hot electrons in the charge density wave / Mott material 1T-TaS_2. At 1.2 eV above the Fermi level we observe a hot electron lifetime of 12 +- 5 fs in the metallic state and of 60 +- 10 fs in the broken symmetry ground state - a direct consequence of the reduced phase space for electron-electron scattering determined by the Mott gap. Boltzmann equation calculations which account for the interaction of hot electrons in a Bloch band with a doublon-holon excitation in the Mott state provide insight into the unoccupied electronic structure in the correlated state.
149 - D.M. Kennes , V. Meden 2010
We address the question whether observables of an exactly solvable model of electrons coupled to (optical) phonons relax into large time stationary state values and investigate if the asymptotic expectation values can be computed using a stationary density matrix. Two initial nonequilibrium situations are considered. A sudden quench of the electron-phonon coupling, starting from the noninteracting canonical equilibrium at temperature T in the electron as well as in the phonon subsystems, leads to a rather simple dynamics. A richer time evolution emerges if the initial state is taken as the product of the phonon vacuum and the filled Fermi sea supplemented by a highly excited additional electron. Our model has a natural set of constants of motion, with as many elements as degrees of freedom. In accordance with earlier studies of such type of models we find that expectation values which become stationary can be described by the density matrix of a generalized Gibbs ensemble which differs from that of a canonical ensemble. For the model at hand it appears to be evident that the eigenmode occupancy operators should be used in the construction of the stationary density matrix.
We reported a systematic change in the average magnetic relaxation rate, after the application and removal of a 5 T magnetic field, in a polycrystalline sample of La0.5Ca0.5MnO3. Magnetic relaxation measurements and magnetization versus field curves were taken from 10 K to 160 K. The long time behavior of the relaxation curves was approximately logarithmic in all cases. Keywords: Charge Ordering, Relaxation, Magnetic measurements
We investigate the quasiparticle relaxation and low-energy electronic structure in undoped SrFe_2As_2 exhibiting spin-density wave (SDW) ordering using optical pump-probe femtosecond spectroscopy. A remarkable critical slowing down of the quasiparticle relaxation dynamics at the SDW transition temperature T_SDW = 200K is observed. From temperature dependence of the transient reflectivity amplitude we determine the SDW-state charge gap magnitude, 2Delta_SDW/k_BT_SDW=7.2+-1. The second moment of the Eliashberg function, lambda<(hbar omega)^2>=110+-10meV^2, determined from the relaxation time above T_SDW, is similar to SmFeAsO and BaFe_2As_2 indicating a rather small electron phonon coupling constant unless the electron-phonon spectral function (alpha^2F(omega) is strongly enhanced in the low-energy phonon region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا