Do you want to publish a course? Click here

Visible spectroscopy of the new ESO Large Program on trans-Neptunian objects and Centaurs: final results

99   0   0.0 ( 0 )
 Added by Sonia Fornasier
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

A second large programme (LP) for the physical studies of TNOs and Centaurs, started at ESO Cerro Paranal on October 2006 to obtain high-quality data, has recently been concluded. In this paper we present the spectra of these pristine bodies obtained in the visible range during the last two semesters of the LP. We investigate the spectral behaviour of the TNOs and Centaurs observed, and we analyse the spectral slopes distribution of the full data set coming from this LP and from the literature. We computed the spectral slope for each observed object, and searched for possible weak absorption features. A statistical analysis was performed on a total sample of 73 TNOs and Centaurs to look for possible correlations between dynamical classes, orbital parameters, and spectral gradient. We obtained new spectra for 28 bodies, 15 of which were observed for the first time. All the new presented spectra are featureless, including 2003 AZ84, for which a faint and broad absorption band possibly attributed to hydrated silicates on its surface has been reported. The data confirm a wide variety of spectral behaviours, with neutral--grey to very red gradients. An analysis of the spectral slopes available from this LP and in the literature for a total sample of 73 Centaurs and TNOs shows that there is a lack of very red objects in the classical population. We present the results of the statistical analysis of the spectral slope distribution versus orbital parameters. In particular, we confirm a strong anticorrelation between spectral slope and orbital inclination for the classical population. A strong correlation is also found between the spectral slope and orbital eccentricity for resonant TNOs, with objects having higher spectral slope values with increasing eccentricity.



rate research

Read More

The thermal emission of transneptunian objects (TNO) and Centaurs has been observed at mid- and far-infrared wavelengths - with the biggest contributions coming from the Spitzer and Herschel space observatories-, and the brightest ones also at sub-millimeter and millimeter wavelengths. These measurements allowed to determine the sizes and albedos for almost 180 objects, and densities for about 25 multiple systems. The derived very low thermal inertias show evidence for a decrease at large heliocentric distances and for high-albedo objects, which indicates porous and low-conductivity surfaces. The radio emissivity was found to be low ($epsilon_r$=0.70$pm$0.13) with possible spectral variations in a few cases. The general increase of density with object size points to different formation locations or times. The mean albedos increase from about 5-6% (Centaurs, Scattered-Disk Objects) to 15% for the Detached objects, with distinct cumulative albedo distributions for hot and cold classicals. The color-albedo separation in our sample is evidence for a compositional discontinuity in the young Solar System. The median albedo of the sample (excluding dwarf planets and the Haumea family) is 0.08, the albedo of Haumea family members is close to 0.5, best explained by the presence of water ice. The existing thermal measurements remain a treasure trove at times where the far-infrared regime is observationally not accessible.
Since 2013, dense and narrow rings are known around the small Centaur object Chariklo and the dwarf planet Haumea. Dense material has also been detected around the Centaur Chiron, although its nature is debated. This is the first time ever that rings are observed elsewhere than around the giant planets, suggesting that those features are more common than previously thought. The origins of those rings remain unclear. In particular, it is not known if the same generic process can explain the presence of material around Chariklo, Chiron, Haumea, or if each object has a very different history. Nonetheless, a specific aspect of small bodies is that they may possess a non-axisymmetric shape (topographic features and or elongation) that are essentially absent in giant planets. This creates strong resonances between the spin rate of the object and the mean motion of ring particles. In particular, Lindblad-type resonances tend to clear the region around the corotation (or synchronous) orbit, where the particles orbital period matches that of the body. Whatever the origin of the ring is, modest topographic features or elongations of Chariklo and Haumea explain why their rings should be found beyond the outermost 1/2 resonance, where the particles complete one revolution while the body completes two rotations. Comparison of the resonant locations relative to the Roche limit of the body shows that fast rotators are favored for being surrounded by rings. We discuss in more details the phase portraits of the 1/2 and 1/3 resonances, and the consequences of a ring presence on satellite formation.
274 - F. L. Rommel 2020
Trans-Neptunian objects (TNOs) and Centaurs are remnants of our planetary system formation, and their physical properties have invaluable information for evolutionary theories. Stellar occultation is a ground-based method for studying these small bodies and has presented exciting results. These observations can provide precise profiles of the involved body, allowing an accurate determination of its size and shape. The goal is to show that even single-chord detections of TNOs allow us to measure their milliarcsecond astrometric positions in the reference frame of the Gaia second data release (DR2). Accurated ephemerides can then be generated, allowing predictions of stellar occultations with much higher reliability. We analyzed data from stellar occultations to obtain astrometric positions of the involved bodies. The events published before the Gaia era were updated so that the Gaia DR2 catalog is the reference. Previously determined sizes were used to calculate the position of the object center and its corresponding error with respect to the detected chord and the International Celestial Reference System (ICRS) propagated Gaia DR2 star position. We derive 37 precise astrometric positions for 19 TNOs and 4 Centaurs. Twenty-one of these events are presented here for the first time. Although about 68% of our results are based on single-chord detection, most have intrinsic precision at the submilliarcsecond level. Lower limits on the diameter and shape constraints for a few bodies are also presented as valuable byproducts. Using the Gaia DR2 catalog, we show that even a single detection of a stellar occultation allows improving the object ephemeris significantly, which in turn enables predicting a future stellar occultation with high accuracy. Observational campaigns can be efficiently organized with this help, and may provide a full physical characterization of the involved object.
We present results of 6 years of observations, reduced and analyzed with the same tools in a systematic way. We report completely new data for 15 objects, for 5 objects we present a new analysis of previously published results plus additional data and for 9 objects we present a new analysis of data already published. Lightcurves, possible rotation periods and photometric amplitudes are reported for all of them. The photometric variability is smaller than previously thought: the mean amplitude of our sample is 0.1mag and only around 15% of our sample has a larger variability than 0.15mag. The smaller variability than previously thought seems to be a bias of previous observations. We find a very weak trend of faster spinning objects towards smaller sizes, which appears to be consistent with the fact that the smaller objects are more collisionally evolved, but could also be a specific feature of the Centaurs, the smallest objects in our sample. We also find that the smaller the objects, the larger their amplitude, which is also consistent with the idea that small objects are more collisionally evolved and thus more deformed. Average rotation rates from our work are 7.5h for the whole sample, 7.6h for the TNOs alone and 7.3h for the Centaurs. All of them appear to be somewhat faster than what one can derive from a compilation of the scientific literature and our own results. Maxwellian fits to the rotation rate distribution give mean values of 7.5h (for the whole sample) and 7.3h (for the TNOs only). Assuming hydrostatic equilibrium we can determine densities from our sample under the additional assumption that the lightcurves are dominated by shape effects, which is likely not realistic. The resulting average density is 0.92g/cm^3 which is not far from the density constraint that one can derive from the apparent spin barrier that we observe.
The sensitivity of ALMA makes it possible to detect thermal mm/submm emission from small/distant Solar System bodies at the sub-mJy level. Measured fluxes are primarily sensitive to the objects diameters, but deriving precise sizes is somewhat hampered by the uncertain effective emissivity at these wavelengths. Following Brown and Butler (2017) who presented ALMA data for four binary TNOs, we report ALMA 1.29 mm measurements of four Centaurs (2002 GZ$_{32}$, Bienor, Chiron, Chariklo) and two TNOs (Huya and Makemake), sampling a range of size, albedo and composition. These thermal fluxes are combined with mid/far-infrared fluxes to derive the relative emissivity at radio (mm/submm) wavelengths, using NEATM and thermophysical models. We reassess earlier thermal measurements of these and other objects -- including Pluto/Charon and Varuna -- exploring effects due to non-spherical shape and varying apparent pole orientation, and show that those can be key for reconciling previous diameter determinations and correctly estimating the spectral emissivities. We also evaluate the possible contribution to thermal fluxes of established (Chariklo) or claimed (Chiron) ring systems. As a general conclusion, all the objects, except Makemake, have radio emissivities significantly lower than unity. Although the emissivity values show diversity, we do not find any significant trend with physical parameters such as diameter, composition, beaming factor, albedo, or color, but we suggest that the emissivity could be correlated with grain size. The mean relative radio emissivity is found to be 0.70$pm$0.13, a value that we recommend for the analysis of further mm/submm data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا