Do you want to publish a course? Click here

Holographic Confining Gauge theory and Response to Electric Field

129   0   0.0 ( 0 )
 Added by Kazuo Ghoroku
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We study the response of confining gauge theory to the external electric field by using holographic Yang-Mills theories in the large $N_c$ limit. Although the theories are in the confinement phase, we find a transition from the insulator to the conductor phase when the electric field exceeds its critical value. Then, the baryon number current is generated in the conductor phase. At the same time, in this phase, the meson melting is observed through the quasi-normal modes of meson spectrum. Possible ideas are given for the string state corresponding to the melted mesons, and they lead to the idea that the source of this current may be identified with the quarks and anti-quarks supplied by the melted mesons. We also discuss about other possible carriers. Furthermore, from the analysis of the massless quark, chiral symmetry restoration is observed at the insulator-conductor transition point by studying a confining theory in which the chiral symmetry is broken.



rate research

Read More

Time dependent perturbations of states in the holographic dual of a 3+1 dimensional confining theory are considered. The perturbations are induced by varying the coupling to the theorys most relevant operator. The dual gravitational theory belongs to a class of Einstein-dilaton theories which exhibit a mass gap at zero temperature and a first order deconfining phase transition at finite temperature. The perturbation is realized in various thermal bulk solutions by specifying time dependent boundary conditions on the scalar, and we solve the fully backreacted Einstein-dilaton equations of motion subject to these boundary conditions. We compute the characteristic time scale of many thermalization processes, noting that in every case we examine, this time scale is determined by the imaginary part of the lowest lying quasi-normal mode of the final state black brane. We quantify the dependence of this final state on parameters of the quench, and construct a dynamical phase diagram. Further support for a universal scaling regime in the abrupt quench limit is provided.
We show a constantly accelerated quark as a string solution of the Nambu-Goto action, which is embedded in the bulk background dual to the $cal{N}$ $=2$ supersymmetric confining Yang-Mills theory. The induced metric of the world sheet for this string solution has an event horizon specified by the fifth coordinate. By an extended Rindler transformation proposed by Xiao, we move to the comoving frame of the accelerated quark-string. Then we find that this horizon is transferred to the event horizon of the bulk and the causal part of the accelerated quark is transformed to a static free-quark in the Rindler coordinate. As a result, the confinement of the Minkowski vacuum is lost in the Rindler vacuum. This point is assured also by studying the potential between the quark and anti-quark. However, the remnants of the original confining force are seen in various thermal quantities. We also discuss the consistency of our results and the claim that the Greens functions will not be changed by the Rindler transformation.
Using holography, we discuss the effects of an external static electric field on the D3/D-instanton theory at zero-temperature, which is a quasi-confining theory, with confined quarks and deconfined gluons. We introduce the quarks to the theory by embedding a probe D7-brane in the gravity side, and turn on an appropriate $U(1)$ gauge field on the flavor brane to describe the electric field. Studying the embedding of the D7-brane for different values of the electric field, instanton density and quark masses, we thoroughly explore the possible phases of the system. We find two critical points in our considerations. We show that beside the usual critical electric field present in deconfined theories, there exists another critical field, with smaller value, below which no quark pairs even the ones with zero mass are produced and thus the electric current is zero in this (insulator) phase. At the same point, the chiral symmetry, spontaneously broken due to the gluon condensate, is restored which shows a first order phase transition. Finally, we obtain the full decay rate calculating the imaginary part of the DBI action of the probe brane and find that it becomes nonzero only when the critical value of the electric field is reached.
192 - M. Ali-Akbari , F. Charmchi 2016
The holographic equilibration of a far-from-equilibrium strongly coupled gauge theory is investigated. The dynamics of a probe D7-brane in an AdS-Vaidya background is studied in the presence of an external time-dependent electric field. Defining the equilibration times $t_{eq}^c$ and $t_{eq}^j$, at which condensation and current relax to their final equilibrated values, receptively, the smallness of transition time $k_M$ or $k_E$ is enough to observe a universal behaviour for re-scaled equilibration times $k_M k_E (t_{eq}^c)^{-2}$ and $k_M k_E (t_{eq}^j)^{-2}$. Moreover, regardless of the values for $k_M$ and $k_E$, $t_{eq}^c/t_{eq}^j$ also behaves universally for large enough value of the ratio of the final electric field to final temperature. Then a simple discussion of the static case reveals that $t_{eq}^c leq t_{eq}^j$. For an out-of-equilibrium process, our numerical results show that, apart from the cases for which $k_E$ is small, the static time ordering persists.
The low-energy effective theory description of a confining theory, such as QCD, is constructed including local interactions between hadrons organized in a derivative expansion. This kind of approach also applies more generically to theories with a mass gap, once the relevant low energy degrees of freedom are identified. The strength of local interactions in the effective theory is determined by the low momentum expansion of scattering amplitudes, with the scattering length capturing the leading order. We compute the main contribution to the scattering length between two spin-zero particles in strongly coupled theories using the gauge/gravity duality. We study two different theories with a mass gap: a massive deformation of ${cal N}=4$ super Yang-Mills theory (${cal N}=1^*$) and a non-supersymmetric five-dimensional theory compactified on a circle. These cases have a different realization of the mass gap in the dual gravity description: the former is the well-known GPPZ singular solution and the latter a smooth $AdS_6$ soliton geometry. Despite disparate gravity duals, we find that the scattering lengths have strikingly similar functional dependences on the masses of the particles and on the conformal dimension of the operators that create them. This evinces universal behavior in the effective description of gapped strongly coupled theories beyond what is expected from symmetry considerations alone.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا