We address realistic schemes for the generation of non-Gaussian states of light based on conditional intensity measurements performed on correlated bipartite states. We consider both quantum and classically correlated states and different kind of detection, comparing the resulting non Gaussianity parameters upon varying the input energy and the detection efficiency. We find that quantum correlations generally lead to higher non Gaussianity, at least in the low energy regime. An experimental implementation feasible with current technology is also suggested.