Do you want to publish a course? Click here

Quantum criticality of Ce$_{1-x}$La$_{x}$Ru$_{2}$Si$_{2}$ : the magnetically ordered phase

123   0   0.0 ( 0 )
 Added by Stephane Raymond
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report specific heat and neutron scattering experiments performed on the system Ce$_{1-x}$La$_{x}$Ru$_{2}$Si$_{2}$ on the magnetic side of its quantum critical phase diagram. The Kondo temperature does not vanish at the quantum phase transition and elastic scattering indicates a gradual localisation of the magnetism when $x$ increases in the ordered phase.



rate research

Read More

The microscopic details of the suppression of antiferromagnetic order in the Kondo-lattice series Ce$_{1-x}$La$_{x}$Cu$_{2}$Ge$_{2}$ due to nonmagnetic dilution by La are revealed through neutron diffraction results for $x=0.20$, $0.40$, $0.75$, and $0.85$. Magnetic Bragg peaks are found for $0.20le xle0.75$, and both the N{e}el temperature, $T_{textrm{N}}$, and the ordered magnetic moment per Ce, $mu$, linearly decrease with increasing $x$. The reduction in $mu$ points to strong hybridization of the increasingly diluted Ce $4f$ electrons, and we find a remarkable quadratic dependence of $mu$ on the Kondo-coherence temperature. We discuss our results in terms of local-moment- versus itinerant-type magnetism and mean-field theory, and show that Ce$_{1-x}$La$_{x}$Cu$_{2}$Ge$_{2}$ provides an exceptional opportunity to quantitatively study competing magnetic interactions in a Kondo lattice.
130 - Veljko Zlatic 2005
The evolution of the thermopower EuCu{2}(Ge{1-x}Si{x}){2} intermetallics, which is induced by the Si-Ge substitution, is explained by the Kondo scattering of conduction electrons on the Eu ions which fluctuate between the magnetic 2+ and non-magnetic 3+ Hunds rule configurations. The Si-Ge substitution is equivalent to chemical pressure which modifies the coupling and the relative occupation of the {it f} and conduction states.
Motivated by the possibility of observing the co-existence between magnetism and unconventional superconductivity in heavy-fermion Ce$_{1-x}$Sm$_x$CoIn$_5$ alloys, we studied how the samarium substitution on the cerium site affects the magnetic field-tuned-quantum criticality of stoicheometric CeCoIn$_5$ by performing specific heat and resistivity measurements. By applying an external magnetic field, we have observed Fermi-liquid to non-Fermi-liquid crossovers in the temperature dependence of the electronic specific heat normalized by temperature and of the resistivity. We obtained the magnetic-field-induced quantum critical point (QCP) by extrapolating to zero temperature the temperature - magnetic field dependence at which the crossovers take place. Furthermore, a scaling analysis of the electronic specific heat is used to confirm the existence of the QCP. We have found that the magnitude of the magnetic-field-induced QCP decreases with increasing samarium concentration. Our analysis of heat capacity and resistivity data reveals a zero-field QCP for $x_textrm{cr} approx 0.15$, which falls inside the region where Sm ions antiferromagnetism and superconductivity co-exist.
In this paper we review some of our recent experimental and theoretical results on transport and thermodynamic properties of heavy-fermion alloys Ce(1-x)Yb(x)CoIn5. Charge transport measurements under magnetic field and pressure on these single crystalline alloys revealed that: (i) relatively small Yb substitution suppresses the field induced quantum critical point, with a complete suppression for nominal Yb doping x>0.20; (ii) the superconducting transition temperature Tc and Kondo lattice coherence temperature T* decrease with x, yet they remain finite over the wide range of Yb concentrations; (iii) both Tc and T* increase with pressure; (iv) there are two contributions to resistivity, which show different temperature and pressure dependences, implying that both heavy and light quasiparticles contribute to inelastic scattering. We also analyzed theoretically the pressure dependence of both T* and Tc within the composite pairing theory. In the purely static limit, when we ignore the lattice dynamics, we find that the composite pairing mechanism necessarily causes opposite behaviors of T* and Tc with pressure: if T* grows with pressure, Tc must decrease with pressure and vice versa.
Recent low temperature heat capacity (C$_P$) measurements on polycrystalline samples of the pyrochlore antiferromagnet Tb$_{2+x}$Ti$_{2-x}$O$_{7+delta}$ have shown a strong sensitivity to the precise Tb concentration $x$, with a large anomaly exhibited for $x sim 0.005$ at $T_C sim 0.5$ K and no such anomaly and corresponding phase transition for $x le 0$. We have grown single crystal samples of Tb$_{2+x}$Ti$_{2-x}$O$_{7+delta}$, with approximate composition $x=-0.001, +0.0042$, and $+0.0147$, where the $x=0.0042$ single crystal exhibits a large C$_P$ anomaly at $T_C$=0.45 K, but neither the $x=-0.001$ nor the $x=+0.0147$ single crystals display any such anomaly. We present new time-of-flight neutron scattering measurements on the $x=-0.001$ and the $x=+0.0147$ samples which show strong $left(frac{1}{2},frac{1}{2},frac{1}{2}right)$ quasi-Bragg peaks at low temperatures characteristic of short range antiferromagnetic spin ice (AFSI) order at zero magnetic field but only under field-cooled conditions, as was previously observed in our $x = 0.0042$ single crystal. These results show that the strong $left(frac{1}{2},frac{1}{2},frac{1}{2}right)$ quasi-Bragg peaks and gapped AFSI state at low temperatures under field cooled conditions are robust features of Tb$_2$Ti$_2$O$_7$, and are not correlated with the presence or absence of the C$_P$ anomaly and phase transition at low temperatures. Further, these results show that the ordered state giving rise to the C$_P$ anomaly is confined to $0 leq x leq 0.01$ for Tb$_{2+x}$Ti$_{2-x}$O$_{7+delta}$, and is not obviously connected with conventional order of magnetic dipole degrees of freedom.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا