Do you want to publish a course? Click here

The red halos of SDSS low surface brightness disk galaxies

134   0   0.0 ( 0 )
 Added by Nils Bergvall
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The faint stellar halos of galaxies contain key information about the oldest stars and the process of galaxy formation. A previous study of stacked SDSS images of disk galaxies has revealed a halo with an abnormally red r-i colour, seemingly inconsistent with our current understanding of stellar halos. Here, we investigate the statistical properties of the faint envelopes of low surface brightness disk galaxies to look for further support for a red excess. 1510 edge-on low surface brightness galaxies were selected from the SDSS Data Release 5, rescaled to the same apparent size, aligned and stacked. This procedure allows us to reach a surface brightness of mu_g ~ 31 mag arcsec^-2. After a careful assessment of instrumental light scattering effects, we derive median and average radial surface brightness and colour profiles in g,r and i. The sample is then divided into 3 subsamples according to g-r colour. All three samples exhibit a red colour excess in r-i in the thick disk/halo region. The halo colours of the full sample, g-r = 0.60+-0.15 and r-i = 0.80+-0.15, are found to be incompatible with the colours of any normal type of stellar population. The fact that no similar colour anomaly is seen at comparable surface brightness levels along the disk rules out a sky subtraction residual as the source of the extreme colours. A number of possible explanations for these abnormally red halos are discussed. We find that two different scenarios -- dust extinction of extragalactic background light and a stellar population with a very bottom-heavy initial mass function -- appear to be broadly consistent with our observations and with similar red excesses reported in the halos of other types of galaxies.



rate research

Read More

We study the star formation histories (SFH) and stellar populations of 213 red and 226 blue nearly face-on low surface brightness disk galaxies (LSBGs), which are selected from the main galaxy sample of Sloan Digital Sky Survey (SDSS) Data Release Seven (DR7). We also want to compare the stellar populations and SFH between the two groups. The sample of both red and blue LSBGs have sufficient signal-to-noise ratio in the spectral continua. We obtain their absorption-line indices (e.g. Mg_2, Hdelta_A), D_n(4000) and stellar masses from the MPA/JHU catalogs to study their stellar populations and SFH. Moreover we fit their optical spectra (stellar absorption lines and continua) by using the spectral synthesis code STARLIGHT on the basis of the templates of Simple Stellar Populations (SSPs). We find that red LSBGs tend to be relatively older, higher metallicity, more massive and have higher surface mass density than blue LSBGs. The D_n(4000)-Hdelta_A plane shows that perhaps red and blue LSBGs have different SFH: blue LSBGs are more likely to be experiencing a sporadic star formation events at the present day, whereas red LSBGs are more likely to form stars continuously over the past 1-2 Gyr. Moreover, the fraction of galaxies that experienced recent sporadic formation events decreases with increasing stellar mass. Furthermore, two sub-samples are defined for both red and blue LSBGs: the sub-sample within the same stellar mass range of 9.5 <= log(M_star/M_odot) <= 10.3, and the surface brightness limiting sub-sample with mu_0(R) <= 20.7 mag arcsec^{-2}. They show consistent results with the total sample in the corresponding relationships, which confirm that our results to compare the blue and red LSBGs are robust.
153 - Y. C. Liang , G. H. Zhong(1 2010
We study the spectroscopic properties of a large sample of Low Surface Brightness galaxies (LSBGs) (with B-band central surface brightness mu0(B)>22 mag arcsec^(-2)) selected from the Sloan Digital Sky Survey Data Release 4 (SDSS-DR4) main galaxy sample. A large sample of disk-dominated High Surface Brightness galaxies (HSBGs, with mu0(B)<22 mag arcsec^(-2)) are also selected for comparison simultaneously. To study them in more details, these sample galaxies are further divided into four subgroups according to mu0(B) (in units of mag arcsec^(-2)): vLSBGs (24.5-22.75),iLSBGs (22.75-22.0), iHSBGs (22.0-21.25), and vHSBGs (<21.25). The diagnostic diagram from spectral emission-line ratios shows that the AGN fractions of all the four subgroups are small (<9%). The 21,032 star-forming galaxies with good quality spectroscopic observations are further selected for studying their dust extinction, strong-line ratios, metallicities and stellar mass-metallicities relations. The vLSBGs have lower extinction values and have less metal-rich and massive galaxies than the other subgroups. The oxygen abundances of our LSBGs are not as low as those of the HII regions in LSBGs studied in literature, which could be because our samples are more luminous, and because of the different metallicity calibrations used. We find a correlation between 12+log(O/H) and mu0(B) for vLSBGs, iLSBGs and iHSBGs but show that this could be a result of correlation between mu0(B) and stellar mass and the well-known mass-metallicity relation. This large sample shows that LSBGs span a wide range in metallicity and stellar mass, and they lie nearly on the stellar mass vs. metallicity and N/O vs. O/H relations of normal galaxies. This suggests that LSBGs and HSBGs have not had dramatically different star formation and chemical enrichment histories.
112 - Y. C. Liang 2009
A large sample of low surface brightness (LSB) disk galaxies is selected from SDSS with B-band central surface brightness mu_0(B) from 22 to 24.5 mag arcsec^(-2). Some of their properties are studied, such as magnitudes, surface brightness, scalelengths, colors, metallicities, stellar populations, stellar masses and multiwavelength SEDs from UV to IR etc. These properties of LSB galaxies have been compared with those of the galaxies with higher surface brightnesses. Then we check the variations of these properties following surface brightness.
274 - Dong Gao 2010
We study the ages of a large sample (1,802) of nearly face-on disk low surface brightness galaxies (LSBGs) by using the evolutionary population synthesis (EPS) model PEGASE with exponential decreasing star formation rate to fit their multiwavelength spectral energy distributions (SEDs) from far-ultraviolet (FUV) to near-infrared (NIR). The derived ages of LSBGs are 1-5 Gyr for most of the sample no matter the constant or varying dust extinction is adopted, which are similar to most of the previous studies on smaller samples. This means that these LSBGs formed their majority of stars quite recently. However, a small part of the sample (~2-3%) have larger ages as 5-8 Gyr, meaning their major star forming process may occur earlier. At the same time, a large sample (5,886) of high surface brightness galaxies (HSBGs) are selected and studied in the same method for comparisons. The derived ages are 1-5 Gyr for most of the sample (97%) as well. These may mean that probably these LSBGs have no much different star formation history from their HSBGs counterparts. But we should notice that the HSBGs are about 0.2 Gyr younger generally, which could mean that the HSBGs may have more recent star forming activities than the LSBGs.
We present BVI photometry and long-slit Halpha rotation curve data obtained with ESO VLT/FORS2 for six low surface brightness galaxies with extremely blue colours and very faint central regions. We find no evidence for a steep central density cusp of the type predicted by many N-body simulations of cold dark matter (CDM) halos. Our observations are instead consistent with dark matter halos characterized by cores of roughly constant density, in agreement with previous investigations. While unremarkable in terms of the central density slope, these galaxies appear very challenging for existing CDM halo models in terms of average central halo density, as measured by the Delta_(V/2) parameter. Since most of our target galaxies are bulgeless disks, our observations also disfavour a recently suggested mechanism for lowering the central mass concentration of the halo by means of a fast collapse phase, as this scenario predicts that the original CDM profile should still be detectable in bulgeless galaxies. Other potential ways of reconciling the CDM predictions with these observations are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا