Do you want to publish a course? Click here

Comment on Photoluminescence ring formation in coupled quantum wells: Excitonic versus ambipolar diffusion

489   0   0.0 ( 0 )
 Added by Egor Muljarov
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

This is a comment on M. Stern, V. Garmider, E. Segre, M. Rappaport, V. Umansky, Y. Levinson, and I. Bar-Joseph, Phys. Rev. Lett. 101, 257402 (2008).



rate research

Read More

This is a supplementary material to our Comment arXiv:0909.4265 on M. Stern, V. Garmider, E. Segre, M. Rappaport, V. Umansky, Y. Levinson, and I. Bar-Joseph, Phys. Rev. Lett. 101, 257402 (2008).
558 - M. Q. Weng , M. W. Wu 2013
We present a microscopic theory for transport of the spin polarized charge density wave with both electrons and holes in the $(111)$ GaAs quantum wells. We analytically show that, contradicting to the commonly accepted belief, the spin and charge motions are bound together only in the fully polarized system but can be separated in the case of low spin polarization or short spin lifetime even when the spatial profiles of spin density wave and charge density wave overlap with each other. We further show that, the Coulomb drag between electrons and holes can markedly enhance the hole spin diffusion if the hole spin motion can be separated from the charge motion. In the high spin polarized system, the Coulomb drag can boost the hole spin diffusion coefficient by more than one order of magnitude.
Despite having outstanding electrical properties, graphene is unsuitable for optical devices because of its zero band gap. Here, we report two-dimensional excitonic photoluminescence (PL) from graphene grown on Cu(111) surface, which shows an unexpected remarkably sharp and strong emission near 3.16 eV (full-width at half-maximum $leq$ 3meV) and multiple emissions around 3.18 eV. As temperature increases, these emissions blue-shift, showing the characteristic negative thermal coefficient of graphene. Observed PLs originate from significantly suppressed dispersion of excited electrons in graphene caused by hybridization of graphene $pi$ and Cu d orbitals of the 1st and 2nd Cu layers at a shifted saddle point 0.525(M+K) of Brillouin zone. This finding provides a new pathway to engineering novel optoelectronic graphene devices, whilst maintaining the outstanding electrical properties of graphene.
We report on the kinetics of the inner ring in the exciton emission pattern. The formation time of the inner ring following the onset of the laser excitation is found to be about 30 ns. The inner ring was also found to disappear within 4 ns after the laser termination. The latter process is accompanied by a jump in the photoluminescence (PL) intensity. The spatial dependence of the PL-jump indicates that the excitons outside of the region of laser excitation, including the inner ring region, are efficiently cooled to the lattice temperature even during the laser excitation. The ring formation and disappearance are explained in terms of exciton transport and cooling.
Quantum wells constitute one of the most important classes of devices in the study of 2D systems. In a double layer QW, the additional which-layer degree of freedom gives rise to celebrated phenomena such as Coulomb drag, Hall drag and exciton condensation. Here we demonstrate facile formation of wide QWs in few-layer black phosphorus devices that host double layers of charge carriers. In contrast to tradition QWs, each 2D layer is ambipolar, and can be tuned into n-doped, p-doped or intrinsic regimes. Fully spin-polarized quantum Hall states are observed on each layer, with enhanced Lande g-factor that is attributed to exchange interactions. Our work opens the door for using 2D semiconductors as ambipolar single, double or wide QWs with unusual properties such as high anisotropy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا