Do you want to publish a course? Click here

Nuclear Suppression of Dileptons at Large xF

216   0   0.0 ( 0 )
 Added by Jan Nemchik
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We study a significant nuclear suppression of the relative production rates (p(d)+A)/(p+d(p)) for the Drell-Yan process at large Feynman xF. Since this is the region of minimal values for the light-front momentum fraction variable x2 in the target nucleus, it is tempting to interpret this as a manifestation of coherence or of a Color Glass Condensate. We demonstrate, however, that this suppression mechanism is governed by the energy conservation restrictions in multiple parton rescatterings in nuclear matter. To eliminate nuclear shadowing effects coming from the coherence, we calculate nuclear suppression in the light-cone dipole approach at large dilepton masses and at energy accessible at FNAL. Our calculations are in a good agreement with data from the E772 experiment. Using the same mechanism we predict also nuclear suppression at forward rapidities in the RHIC energy range.



rate research

Read More

98 - J. Cepila , 2010
Data from E772 and E866 experiments on the Drell-Yan process exhibit a significant nuclear suppression at large Feynman xF. We show that a corresponding kinematic region does not allow to interpret this as a manifestation of coherence or a Color Glass Condensate. We demonstrate, however, that this suppression can be treated alternatively as an effective energy loss proportional to initial energy. To eliminate suppression coming from the coherence, we perform predictions for nuclear effects also at large dilepton masses. Our calculations are in a good agreement with available data. Since the kinematic limit can be also approached in transverse momenta pT, we present in the RHIC energy range corresponding predictions for expected large-pT suppression as well. Since a new experiment E906 planned at FNAL will provide us with more precise data soon, we present also predictions for expected large-xF nuclear suppression in this kinematic region.
100 - J. Nemchik 2008
We demonstrate that strong suppression of the relative production rate (d+Au)/(p+p) of inclusive high-pT hadrons at forward rapidities observed at RHIC is due to parton multiple rescatterings in nuclear matter. The light-cone dipole approach-based calculations are in a good agreement with BRAHMS and STAR data. They also indicate a significant nuclear suppression at midrapidities with a weak onset of the coherence effects. This prediction is supported by the preliminary d+Au data from the PHENIX Collaboration. Moreover, since similar suppression pattern is also expected to show up at lower energies where effects of parton saturation are not expected, we are able to exclude from the interpretation of observed phenomena models based on the Color Glass Condensate.
We discuss a common feature of all known reactions on nuclear targets - a significant suppression at large x. Simple interpretation of this effect is based on energy conservation restrictions in initial state parton rescatterings. Using the light-cone dipole approach this mechanism is shown to control variety of processes on nuclear targets: high-pT particle production at different rapidities as well as direct and virtual (Drell-Yan) photon production. We demonstrate universality and wide applicability of this mechanism allowing to describe large-x effects also at SPS and FNAL energies too low for the onset of coherent effects or shadowing.
190 - V. Guzey , E. Kryshen 2020
Using the data on coherent $J/psi$ photoproduction in Pb-Pb ultraperipheral collisions (UPCs) obtained in Runs 1 and 2 at the Large Hadron Collider (LHC), we determined with a good accuracy the nuclear suppression factor of $S_{Pb}(x)$ in a wide range of the momentum fraction $x$, $10^{-5} leq x leq 0.04$. In the small-$x$ region $x < 10^{-3}$, our $chi^2$ fit favors a flat form of $S_{Pb}(x) approx 0.6$ with approximately a 5% accuracy for $x=6 times 10^{-4} - 10^{-3} $ and a 25% error at $x=10^{-4}$. At the same time, uncertainties of the fit do not exclude a slow decrease of $S_{Pb}(x)$ in the small-$x$ limit. At large $x$, $S_{Pb}(x)$ is constrained to better than 10% precision up to $x=0.04$ and is also consistent with the value of $S_{Pb}(x)$ at $langle x rangle =0.042$, which we extract from the Fermilab data on the $A$ dependence of the cross section of coherent $J/psi$ photoproduction on fixed nuclear targets. The resulting uncertainties on $S_{Pb}(x)$ are small, which indicates the potential of the LHC data on coherent charmonium photoproduction in Pb-Pb UPCs to provide additional constraints on small-$x$ nPDFs. We explicitly demonstrate this using as an example the EPPS16 and nCTEQ16 nuclear parton distribution functions, whose uncertainties decrease severalfold after the Bayesian reweighting of the discussed UPC data.
We study a strong suppression of the relative production rate (d-Au)/(p-p) for inclusive high-pT hadrons of different species at large forward rapidities (large Feynman xF). The model predictions calculated in the light-cone dipole approach are in a good agreement with the recent measurements by the BRAHMS and STAR Collaborations at the BNL Relativistic Heavy Ion Collider. We predict a similar suppression at large pT and large xF also at lower energies, where no effect of coherence is possible. It allows to exclude the saturation models or the models based on Color Glass Condensate from interpretation of nuclear effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا