Do you want to publish a course? Click here

HI kinematics and dynamics of Messier 31

209   0   0.0 ( 0 )
 Added by Laurent Chemin
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

[Abridged] We present a new deep 21-cm survey of the Andromeda galaxy, based on high resolution observations performed with the Synthesis Telescope and the 26-m antenna at DRAO. The HI distribution and kinematics of the disc are analyzed and basic dynamical properties are given. The rotation curve is measured out to 38 kpc, showing a nuclear peak, a dip around 4 kpc, two distinct flat parts and an increase in the outermost regions. Except for the innermost regions, the axisymmetry of the gas rotation is very good. A very strong warp of the HI disc is evidenced. The central regions appear less inclined than the average disc inclination, while the outer regions appear more inclined. Mass distribution models by LCDM NFW, Einasto or pseudo-isothermal dark matter halos with baryonic components are presented. They fail to reproduce the exact shape of the rotation curve. No significant differences are measured between the various shapes of halo. The dynamical mass of M31 enclosed within a radius of 38 kpc is (4.7 +/- 0.5) x 10^11 Msol. The dark matter component is almost 4 times more massive than the baryonic mass inside this radius. A total mass of 1.0 x 10^12 Msol is derived inside the virial radius. New HI structures are discovered in the datacube, like the detection of up to five HI components per spectrum, which is very rarely seen in other galaxies. The most remarkable new HI structures are thin HI spurs and an external arm in the disc outskirts. A relationship between these spurs and outer stellar clumps is evidenced. The external arm is 32 kpc long, lies on the far side of the galaxy and has no obvious counterpart on the other side of the galaxy. Its kinematics clearly differs from the outer adjacent disc. Both these HI perturbations could result from tidal interactions with galaxy companions.



rate research

Read More

208 - Laurent Chemin 2009
We report on preliminary results from a new deep 21-cm survey of the Andromeda galaxy, based on observations performed with the Synthesis Telescope and the 26-m antenna at DRAO. The HI distribution and kinematics of the disc are analyzed and basic dynamical properties are derived. New HI structures are discovered, like thin HI spur-like structures and an external arm in the disc outskirts. The HI spurs are related to perturbed stellar clumps outside the main disc of M31. The external arm lies on the far, receding side of the galaxy and has no obvious counterpart in the opposite side. These HI perturbations probably result from tidal interactions with companions. It is found a dynamical mass of 4.7 +/- 0.5 x10^11 Msol enclosed within a radius R = 38 kpc and a total mass of ~1 x10^12 Msol inside the virial radius.
A new deep HI survey of the galaxy Messier 33 is presented, based on observations obtained at the Dominion Radio Astrophysical Observatory. We observe a perturbed outer gas distribution and kinematics in M33, and confirm the disk warping as a significant kinematical twist of the major axis of the velocity field, though no strong tilt is measured, in agreement with previous work. Evidence for a new low brightness HI component with anomalous velocity is reported. It harbours a large velocity scatter, as its kinematics both exceeds and lags the rotation of the disk, and leaks in the forbidden velocity zone of apparent counter-rotation. The observations also reveal wide and multiple peak HI profiles which can be partly explained by crowded orbits in the framework of the warp model. Asymmetric motions are identified in the velocity field, as possible signatures of a lopsided potential and the warp. The mass distribution modeling of the hybrid Halpha-HI rotation curve favours a cuspy dark matter halo with a concentration in disagreement with the LambdaCDM dark halo mass-concentration relationship. The total mass enclosed in 23 kpc is 8 10^10 Msol, of which 11% are stars and gas. At the virial radius of the cuspy halo, the resulting total mass is 5 10^11 Msol, but with a baryonic mass fraction of 2% only. This strongly suggests a more realistic radius encompassing the total mass of M33 well smaller than the virial radius of the halo, maybe comparable to the size of the HI disk.
As part of a long-term project to revisit the kinematics and dynamics of the large disc galaxies of the Local Group, we present the first deep, wide-field (42 x 56) 3D-spectroscopic survey of the ionized gas disc of Messier 33. Fabry-Perot interferometry has been used to map its Ha distribution and kinematics at unprecedented angular resolution (<3) and resolving power (12600), with the 1.6m telescope at the Observatoire du Mont Megantic. The ionized gas distribution follows a complex, large-scale spiral structure, unsurprisingly coincident with the already-known spiral structures of the neutral and molecular gas discs. The kinematical analysis of the velocity field shows that the rotation center of the Ha disc is distant from the photometric center by 170 pc (sky projected distance) and that the kinematical major-axis position angle and disc inclination are in excellent agreement with photometric values. The Ha rotation curve agrees very well with the HI rotation curves for 0 < R < 6.5 kpc, but the Ha velocities are 10-20 km/s higher for R > 6.5 kpc. The reason for this discrepancy is not well understood. The velocity dispersion profile is relatively flat around 16 km/s, which is at the low end of velocity dispersions of nearby star-forming galactic discs. A strong relation is also found between the Ha velocity dispersion and the Ha intensity. Mass models were obtained using the Ha rotation curve but, as expected, the dark matter halos parameters are not very well constrained since the optical rotation curve only extends out to 8 kpc.
67 - S. S. Larsen 2021
We recently found the globular cluster (GC) EXT8 in M31 to have an extremely low metallicity of [Fe/H]=-2.91+/-0.04 using high-resolution spectroscopy. Here we present a colour-magnitude diagram (CMD) for EXT8, obtained with the Wide Field Camera 3 on board the Hubble Space Telescope. Compared with the CMDs of metal-poor Galactic GCs, we find that the upper red giant branch (RGB) of EXT8 is about 0.03 mag bluer in F606W-F814W and slightly steeper, as expected from the low spectroscopic metallicity. The observed colour spread on the upper RGB is consistent with being caused entirely by the measurement uncertainties, and we place an upper limit of sigma(F606W-F814W)=0.015 mag on any intrinsic colour spread. The corresponding metallicity spread can be up to sigma([Fe/H])=0.2 dex or >0.7 dex, depending on the isochrone library adopted. The horizontal branch (HB) is located mostly on the blue side of the instability strip and has a tail extending to at least M(F606W)=+3, as in the Galactic GC M15. We identify two candidate RR Lyrae variables and several UV-luminous post-HB/post AGB star candidates, including one very bright (M(F300X)=-3.2) source near the centre of EXT8. The surface brightness of EXT8 out to a radius of 25 arcsec is well fitted by a Wilson-type profile with an ellipticity of epsilon=0.20, a semi-major axis core radius of 0.25, and a central surface brightness of 15.2 mag per square arcsec in the F606W band, with no evidence of extra-tidal structure. Overall, EXT8 has properties consistent with it being a normal, but very metal-poor GC, and its combination of relatively high mass and very low metallicity thus remains challenging to explain in the context of GC formation theories operating within the hierarchical galaxy assembly paradigm.
74 - K. A. Lutz 2018
By analysing a sample of galaxies selected from the HI Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected HI content based on their optical properties, we investigate what drives these HI eXtreme (HIX) galaxies to be so HI-rich. We model the HI kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed HIX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model Dark Sage. We find that (1) HI discs in HIX galaxies are more likely to be warped and more likely to host HI arms and tails than in the control galaxies, (2) the average HI and average stellar column density of HIX galaxies is comparable to the control sample, (3) HIX galaxies have higher HI and baryonic specific angular momenta than control galaxies, (4) most HIX galaxies live in higher-spin haloes than most control galaxies. These results suggest that HIX galaxies are HI-rich because they can support more HI against gravitational instability due to their high specific angular momentum. The majority of the HIX galaxies inherits their high specific angular momentum from their halo. The HI content of HIX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array (ATCA) through the large program C 2705.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا