Do you want to publish a course? Click here

Star Formation Activities of Galaxies in the Large-Scale Structures at z=1.2

249   0   0.0 ( 0 )
 Added by Masayuki Tanaka
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent wide-field imaging observations of the X-ray luminous cluster RDCSJ1252.9-2927 at z=1.24 uncovered several galaxy groups that appear to be embedded in filamentary structure extending from the cluster core. We make a spectroscopic study of the galaxies in these groups using GMOS on Gemini-South and FORS2 on VLT with the aim of determining if these galaxies are physically associated to the cluster. We find that three groups contain galaxies at the cluster redshift and that they are probably bound to the cluster. This is the first confirmation of filamentary structure as traced by galaxy groups at z>1. We then use several spectral features in the FORS2 spectra to determine the star formation histories of group galaxies. We find a population of relatively red star-forming galaxies in the groups that are absent from the cluster core. While similarly red star forming galaxies can also be found in the field, the average strength of the hd line is systematically weaker in group galaxies. Interestingly, these groups at z=1.2 are in an environment in which the on-going build-up of red sequence is happening. The unusual line strengths can be explained by star formation that is heavily obscured by dust. We hypothesize that galaxy-galaxy interactions, which is more efficient in the group environment, is the mechanism that drives these dust obscured star formation. The hypothesis can be tested by obtaining spectral observations in the near-IR, high resolution imaging observations and observations in the mid-IR.



rate research

Read More

We present evidence of large-scale outflows from three low-mass (log(M/M_sun)~9.75) star-forming (SFR >4 M_sun/yr) galaxies observed at z=1.24, z=1.35 and z=1.75 in the 3D-HST Survey. Each of these galaxies is located within a projected physical distance of 60 kpc around the sight line to the quasar SDSS J123622.93+621526.6, which exhibits well-separated strong (W_r>0.8A) Mg II absorption systems matching precisely to the redshifts of the three galaxies. We derive the star formation surface densities from the H-alpha emission in the WFC3 G141 grism observations for the galaxies and find that in each case the star formation surface density well-exceeds 0.1 M_sun/yr/kpc^2, the typical threshold for starburst galaxies in the local Universe. From a small but complete parallel census of the 0.65<z<2.6 galaxies with H_140<24 proximate to the quasar sight line, we detect Mg II absorption associated with galaxies extending to physical distances of 130 kpc. We determine that the W_r>0.8A Mg II covering fraction of star-forming galaxies at 1<z<2 may be as large as unity on scales extending to at least 60 kpc, providing early constraints on the typical extent of starburst-driven winds around galaxies at this redshift. Our observations additionally suggest that the azimuthal distribution of W_r>0.4A Mg II absorbing gas around star-forming galaxies may evolve from z~2 to the present, consistent with recent observations of an increasing collimation of star formation-driven outflows with time from z~3.
We describe the construction and general features of VIPERS, the VIMOS Public Extragalactic Redshift Survey. This `Large Programme has been using the ESO VLT with the aim of building a spectroscopic sample of ~100,000 galaxies with i_{AB}<22.5 and 0.5<z<1.5. The survey covers a total area of ~24 deg^2 within the CFHTLS-Wide W1 and W4 fields. VIPERS is designed to address a broad range of problems in large-scale structure and galaxy evolution, thanks to a unique combination of volume (~ 5 x 10^7 h^{-3} Mpc^3) and sampling rate (~ 40%), comparable to state-of-the-art surveys of the local Universe, together with extensive multi-band optical and near-infrared photometry. Here we present the survey design, the selection of the source catalogue and the development of the spectroscopic observations. We discuss in detail the overall selection function that results from the combination of the different constituents of the project. This includes the masks arising from the parent photometric sample and the spectroscopic instrumental footprint, together with the weights needed to account for the sampling and the success rates of the observations. Using the catalogue of 53,608 galaxy redshifts composing the forthcoming VIPERS Public Data Release 1 (PDR-1), we provide a first assessment of the quality of the spectroscopic data. Benefiting from the combination of size and detailed sampling of this dataset, we conclude by presenting a map showing in unprecedented detail the large-scale distribution of galaxies between 5 and 8 billion years ago. [abridged]
Analyses of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. An important observational constraint neglected in the analysis is the mass of dust giving rise to the IR emission. In this paper we add this constraint to the analysis of AzTEC-3. Adopting an upper limit to the mass of stars and a bolometric luminosity for this object, we construct stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. We find that the model with a Top Heavy IMF provided the most plausible scenario consistent with the observational constraints. In this scenario the dust formed over a period of ~200 Myr, with a SFR of ~500 Msun/yr. These values for the age and SFR in AzTEC-3 are significantly higher and lower, respectively, from those derived without the dust mass constraint. However, this scenario is not unique, and others cannot be completely ruled out because of the prevailing uncertainties in the age of the galaxy, its bolometric luminosity, and its stellar and dust masses. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.
We report on two quantitative, morphological estimators of the filamentary structure of the Cosmic Web, the so-called global and local skeletons. The first, based on a global study of the matter density gradient flow, allows us to study the connectivity between a density peak and its surroundings, with direct relevance to the anisotropic accretion via cold flows on galactic halos. From the second, based on a local constraint equation involving the derivatives of the field, we can derive predictions for powerful statistics, such as the differential length and the relative saddle to extrema counts of the Cosmic web as a function of density threshold (with application to percolation of structures and connectivity), as well as a theoretical framework to study their cosmic evolution through the onset of gravity-induced non-linearities.
76 - G.M. Williger 2001
The largest known structure in the high redshift universe is mapped by at least 18 quasars and spans ~5 deg x 2.5 deg on the sky, with a quasar spatial overdensity of 6-10 times above the mean. This large quasar group provides an extraordinary laboratory ~100 x 200 x 200 h^-3 comoving Mpc^3 in size (q0=0.5, Lambda=0, H0=100h km/s/Mpc) covering 1.20<z<1.39 in redshift. One approach to establish how LQGs relate to mass (galaxy) enhancements is to probe their gas content and distribution via background quasars. We have found the large quasar group to be associated with 11 MgII absorption systems at 1.2<z<1.4; 0.02%--2.05% of simulations with random MgII redshifts match or exceed this number in that redshift interval, depending on the normalization method used. The minimal spanning tree test also supports the existence of a structure of MgII absorbers coincident with the LQG, and additionally indicates a foreground structure populated by MgII absorbers and quasars at z~0.8. Finally, we find a tendency for MgII absorbers in general to correlate with field quasars (i.e. quasars both inside and outside of the LQG) at a projected scale length on the sky of 9/h Mpc and a velocity difference |Delta v|=3000 to 4500 km/s. While the correlation is on a scale consistent with observed galaxy-AGN distributions, the nonzero velocity offset could be due to the periphery effect, in which quasars tend to populate the outskirts of clusters of galaxies and metal absorption systems, or to peculiar velocity effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا