Do you want to publish a course? Click here

Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator

343   0   0.0 ( 0 )
 Added by Bob Cava
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bi2Se3 is one of a handful of known topological insulators. Here we show that copper intercalation in the van der Waals gaps between the Bi2Se3 layers, yielding an electron concentration of ~ 2 x 10^20cm-3, results in superconductivity at 3.8 K in CuxBi2Se3 for x between 0.12 and 0.15. This demonstrates that Cooper pairing is possible in Bi2Se3 at accessible temperatures, with implications for study of the physics of topological insulators and potential devices.



rate research

Read More

Topological superconductivity, implying gapless protected surface states, has recently been proposed to exist in the compound CuxBi2Se3. Unfortunately, low diamagnetic shielding fractions and considerable inhomogeneity have been reported in this compound. In an attempt to understand and improve on the finite superconducting volume fractions, we have investigated the effects of various growth and post-annealing conditions. With a melt-growth (MG) method, diamagnetic shielding fractions of up to 56% in Cu0.3Bi2Se3 have been obtained, the highest value reported for this method. We investigate the efficacy of various quenching and annealing conditions, finding that quenching from temperatures above 560C is essential for superconductivity, whereas quenching from lower temperatures or not quenching at all is detrimental. A modified floating zone (FZ) method yielded large single crystals but little superconductivity. Even after annealing and quenching, FZ-grown samples had much less chance of being superconducting than MG-grown samples. From the low shielding fractions in FZ-grown samples and the quenching dependence, we suggest that a metastable secondary phase having a small volume fraction in most of the samples may be responsible for the superconductivity.
We report point contact measurements in high quality single crystals of Cu0.2Bi2Se3. We observe three different kinds of spectra: (1) Andreev-reflection spectra, from which we infer a superconducting gap size of 0.6mV; (2) spectra with a large gap which closes above Tc at about 10K; and (3) tunneling-like spectra with zero-bias conductance peaks. These tunneling spectra show a very large gap of ~2meV (2Delta/KTc ~ 14).
At an interface between a topological insulator (TI) and a conventional superconductor (SC), superconductivity has been predicted to change dramatically and exhibit novel correlations. In particular, the induced superconductivity by an $s$-wave SC in a TI can develop an order parameter with a $p$-wave component. Here we present experimental evidence for an unexpected proximity-induced novel superconducting state in a thin layer of the prototypical TI, Bi$_2$Se$_3$, proximity coupled to Nb. From depth-resolved magnetic field measurements below the superconducting transition temperature of Nb, we observe a local enhancement of the magnetic field in Bi$_2$Se$_3$ that exceeds the externally applied field, thus supporting the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state. Our experimental results are complemented by theoretical calculations supporting the appearance of such a component at the interface which extends into the TI. This state is topologically distinct from the conventional Bardeen-Cooper-Schrieffer state it originates from. To the best of our knowledge, these findings present a first observation of bulk odd-frequency superconductivity in a TI. We thus reaffirm the potential of the TI-SC interface as a versatile platform to produce novel superconducting states.
155 - Shruti , V. K. Maurya , P. Neha 2015
Strontium intercalation between van der Waals bonded layers of topological insulator Bi2Se3 is found to induce superconductivity with a maximum Tc of 2.9 K. Transport measurement on single crystal of optimally doped sample Sr0.1Bi2Se3 shows weak anisotropy (1.5) and upper critical field Hc2(0) equals to 2.1 T for magnetic field applied per-pendicular to c -axis of the sample. The Ginzburg-Landau coherence lengths are Xi-ab = 15.3 {AA} and Xi_c = 10.2 {AA}. The lower critical field and zero temperature penetration depth Lambda(0) are estimated to be 0.35 mT and 1550 nm respectively. Hall and Seebeck measurements confirm the dominance of electronic conduction and the carrier concentration is surprisingly low (n = 1.85 x 10^19 cm-3) at 10 K indicating possibility of unconventional superconductivity.
The iron arsenide RbFe_2As_2 with the ThCr_2Si_2-type structure is found to be a bulk superconductor with T_c=2.6 K. The onset of diamagnetism was used to estimate the upper critical field H_c2(T), resulting in dH_c2/dT=-1.4 T/K and an extrapolated H_c2(0)=2.5 T. As a new representative of iron pnictide superconductors, superconducting RbFe_2As_2 contrasts with BaFe_2As_2, where the Fermi level is higher and a magnetic instability is observed. Thus, the solid solution series (Rb,Ba)Fe_2As_2 is a promising system to study the crossover from superconductivity to magnetism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا