Do you want to publish a course? Click here

The Bolocam Galactic Plane Survey -- II. Catalog of the Image Data

125   0   0.0 ( 0 )
 Added by Erik Rosolowsky
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a catalog of 8358 sources extracted from images produced by the Bolocam Galactic Plane Survey (BGPS). The BGPS is a survey of the millimeter dust continuum emission from the northern Galactic plane. The catalog sources are extracted using a custom algorithm, Bolocat, which was designed specifically to identify and characterize objects in the large-area maps generated from the Bolocam instrument. The catalog products are designed to facilitate follow-up observations of these relatively unstudied objects. The catalog is 98% complete from 0.4 Jy to 60 Jy over all object sizes for which the survey is sensitive (<3.5). We find that the sources extracted can best be described as molecular clumps -- large dense regions in molecular clouds linked to cluster formation. We find the flux density distribution of sources follows a power law with dN/dS ~S^(-2.4 +/- 0.1) and that the mean Galactic latitude for sources is significantly below the midplane: <b>=(-0.095 +/- 0.001) deg.



rate research

Read More

We present 107 maps of continuum emission at 350 microns from Galactic molecular clumps. Observed sources were mainly selected from the Bolocam Galactic Plane Survey (BGPS) catalog, with 3 additional maps covering star forming regions in the outer Galaxy. The higher resolution of the SHARC-II images (8.5 beam) compared with the 1.1 mm images from BGPS (33 beam) allowed us to identify a large population of smaller substructures within the clumps. A catalog is presented for the 1386 sources extracted from the 350 micron maps. The color temperature distribution of clumps based on the two wavelengths has a median of 13.3 K and mean of 16.3 +- 0.4 K, assuming an opacity law index of 1.7. For the structures with good determination of color temperatures, the mean ratio of gas temperature, determined from NH3 observations, to dust color temperature is 0.88 and the median ratio is 0.76. About half the clumps have more than two substructures and 22 clumps have more than 10. The fraction of the mass in dense substructures seen at 350 microns compared to the mass of their parental clump is ~0.19, and the surface densities of these substructures are, on average, 2.2 times those seen in the clumps identified at 1.1 mm. For a well-characterized sample, 88 structures (31%) exceed a surface density of 0.2 g cm^(-2), and 18 (6%) exceed 1.0 g cm^(-2), thresholds for massive star formation suggested by theorists.
The formation processes and the evolutionary stages of high-mass stars are poorly understood compared to low-mass stars. Large-scale surveys are needed to provide an unbiased census of high column density sites which can potentially host precursors to high-mass stars. Here we use the ATLASGAL survey covering 420 sq. degree of the Galactic plane at 870 $mu$m; and use the MRE-GLC method to identify the population of embedded sources throughout the inner Galaxy. We identify in total 10861 compact sub-millimeter sources with fluxes above 5 sigma. Completeness tests show that our catalogue is 97% complete above 5 sigma and >99% complete above 7$sigma$. We correlate this sample with mid-infrared point source catalogues (MSX at 21.3 $mu$m and WISE at 22 $mu$m) and determine a lower limit of ~33% that are associated with embedded protostellar objects. We note that the proportion of clumps associated with mid-infrared sources increases with increasing flux density, achieving a rather constant fraction of ~75% of all clumps with fluxes over 5 Jy/beam being associated with star-formation. Examining the source counts as a function of Galactic longitude we are able to identify the most prominent star forming regions in the Galaxy. From the fraction of the likely massive quiescent clumps (~25%) we estimate a formation time-scale of ~7.5+/-2.5 $times$ 10$^4$yr for the deeply embedded phase before the emergence of luminous YSOs. Such a short duration for the formation of high-mass stars in massive clumps clearly proves that the earliest phases have to be dynamic with supersonic motions.
Recent Galactic plane surveys of dust continuum emission at long wavelengths have identified a population of dense, massive clumps with no evidence for on-going star formation. These massive starless clump candidates are excellent sites to search for the initial phases of massive star formation before the feedback from massive star formation effects the clump. In this study, we search for the spectroscopic signature of inflowing gas toward starless clumps, some of which are massive enough to form a massive star. We observed 101 starless clump candidates identified in the Bolocam Galactic Plane Survey (BGPS) in HCO+ J = 1-0 using the 12m Arizona Radio Observatory telescope. We find a small blue excess of E = (Nblue - Nred)/Ntotal = 0.03 for the complete survey. We identified 6 clumps that are good candidates for inflow motion and used a radiative transfer model to calculate mass inflow rates that range from 500 - 2000 M /Myr. If the observed line profiles are indeed due to large-scale inflow motions, then these clumps will typically double their mass on a free fall time. Our survey finds that massive BGPS starless clump candidates with inflow signatures in HCO+ J = 1-0 are rare throughout our Galaxy.
We use the distance probability density function (DPDF) formalism of Ellsworth-Bowers et al. (2013, 2015) to derive physical properties for the collection of 1,710 Bolocam Galactic Plane Survey (BGPS) version 2 sources with well-constrained distance estimates. To account for Malmquist bias, we estimate that the present sample of BGPS sources is 90% complete above 400 $M_odot$ and 50% complete above 70 $M_odot$. The mass distributions for the entire sample and astrophysically motivated subsets are generally fitted well by a lognormal function, with approximately power-law distributions at high mass. Power-law behavior emerges more clearly when the sample population is narrowed in heliocentric distance (power-law index $alpha = 2.0pm0.1$ for sources nearer than 6.5 kpc and $alpha = 1.9pm0.1$ for objects between 2 kpc and 10 kpc). The high-mass power-law indices are generally $1.85 leq alpha leq 2.05$ for various subsamples of sources, intermediate between that of giant molecular clouds and the stellar initial mass function. The fit to the entire sample yields a high-mass power-law $hat{alpha} = 1.94_{-0.10}^{+0.34}$. Physical properties of BGPS sources are consistent with large molecular cloud clumps or small molecular clouds, but the fractal nature of the dense interstellar medium makes difficult the mapping of observational categories to the dominant physical processes driving the observed structure. The face-on map of the Galactic disks mass surface density based on BGPS dense molecular cloud structures reveals the high-mass star-forming regions W43, W49, and W51 as prominent mass concentrations in the first quadrant. Furthermore, we present a 0.25-kpc resolution map of the dense gas mass fraction across the Galactic disk that peaks around 5%.
We present the results of a search for mid-infrared signs of star formation activity in the 1.1 mm sources in the Bolocam Galactic Plane Survey (BGPS). We have correlated the BGPS catalog with available mid-IR Galactic plane catalogs based on the Spitzer Space Telescope GLIMPSE legacy survey and the Midcourse Space Experiment (MSX) Galactic plane survey. We find that 44% (3,712 of 8,358) of the BGPS sources contain at least one mid-IR source, including 2,457 of 5,067 (49%) within the area where all surveys overlap (10 deg < l < 65 deg). Accounting for chance alignments between the BGPS and mid-IR sources, we conservatively estimate that 20% of the BPGS sources within the area where all surveys overlap show signs of active star formation. We separate the BGPS sources into four groups based on their probability of star formation activity. Extended Green Objects (EGOs) and Red MSX Sources (RMS) make up the highest probability group, while the lowest probability group is comprised of starless BGPS sources which were not matched to any mid-IR sources. The mean 1.1 mm flux of each group increases with increasing probability of active star formation. We also find that the starless BGPS sources are the most compact, while the sources with the highest probability of star formation activity are on average more extended with large skirts of emission. A subsample of 280 BGPS sources with known distances demonstrates that mass and mean H_2 column density also increase with probability of star formation activity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا