No Arabic abstract
We present SHARC-II 350um imaging of twelve 24um-bright (F_24um > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and CARMA 1mm imaging of a subset of 2 DOGs, all selected from the Bootes field of the NOAO Deep Wide-Field Survey. Detections of 4 DOGs at 350um imply IR luminosities which are consistent within a factor of 2 of expectations based on a warm dust spectral energy distribution (SED) scaled to the observed 24um flux density. The 350um upper limits for the 8 non-detected DOGs are consistent with both Mrk231 and M82 (warm dust SEDs), but exclude cold dust (Arp220) SEDs. The two DOGs targeted at 1mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T_dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ~3x10^8 M_sun. In comparison to other dusty z ~ 2 galaxy populations such as sub-millimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2x10^13 L_sun vs. 6x10^12 L_sun for the other galaxy populations), warmer dust temperatures (>35-60 K vs. ~30 K), and lower inferred dust masses (3x10^8 M_sun vs. 3x10^9 M_sun). Herschel and SCUBA-2 surveys should be able to detect hundreds of these power-law dominated DOGs. We use HST and Spitzer/IRAC data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24um-bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z~2 involves a sub-millimeter bright, cold-dust and star-formation dominated phase followed by a 24um-bright, warm-dust and AGN-dominated phase.
Dust-obscured galaxies (DOGs) are a subset of high-redshift (z approx 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g. L_{IR} > 10^{12} Lsun). We present new far-infrared photometry, at 250, 350, and 500 um (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR, confirming their high IR luminosities, which range from 10^{11.6} Lsun < L_{IR} (8-1000 um) <10^{13.6} Lsun. 90% of the Herschel detected DOGs in this sample are ULIRGs and 30% have L_{IR} > 10^{13} Lsun. The rest-frame near-IR (1 - 3 um) SEDs of the Herschel detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with power-law SEDs in the rest-frame near-IR show observed-frame 250/24 um flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar bump in their rest-frame near-IR show observed-frame 250/24 um flux density ratios similar to local star-bursting ULIRGs like NGC 6240. For the Herschel detected DOGs, accurate estimates (within approx 25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g. from Spitzer observed-frame 24 um luminosities). Herschel detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 um luminosity (the IR8= L_{IR}(8-1000 um)/v L_{v}(8 um) parameter of Elbaz et al. 2011). Instead of lying on the z=1-2 infrared main-sequence of star forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel detected DOGs are similar to scaled
We present Hubble Space Telescope (HST) imaging of 22 ultra-luminous infrared galaxies (ULIRGs) at z~2 with extremely red R-[24] colors (called dust-obscured galaxies, or DOGs) which have a local maximum in their spectral energy distribution (SED) at rest-frame 1.6um associated with stellar emission. These sources, which we call bump DOGs, have star-formation rates of 400-4000 Msun/yr and have redshifts derived from mid-IR spectra which show strong polycyclic aromatic hydrocarbon emission --- a sign of vigorous on-going star-formation. Using a uniform morphological analysis, we look for quantifiable differences between bump DOGs, power-law DOGs (Spitzer-selected ULIRGs with mid-IR SEDs dominated by a power-law and spectral features that are more typical of obscured active galactic nuclei than starbursts), sub-millimeter selected galaxies (SMGs), and other less-reddened ULIRGs from the Spitzer extragalactic First Look Survey (XFLS). Bump DOGs are larger than power-law DOGs (median Petrosian radius of 8.4 +/- 2.7 kpc vs. 5.5 +/- 2.3 kpc) and exhibit more diffuse and irregular morphologies (median M_20 of -1.08 +/- 0.05 vs. -1.48 +/- 0.05). These trends are qualitatively consistent with expectations from simulations of major mergers in which merging systems during the peak star-formation rate period evolve from M_20 = -1.0 to M_20 = -1.7. Less obscured ULIRGs (i.e., non-DOGs) tend to have more regular, centrally peaked, single-object morphologies rather than diffuse and irregular morphologies. This distinction in morphologies may imply that less obscured ULIRGs sample the merger near the end of the peak star-formation rate period. Alternatively, it may indicate that the intense star-formation in these less-obscured ULIRGs is not the result of a recent major merger.
We present the angular autocorrelation function of 2603 dust-obscured galaxies (DOGs) in the Bootes field of the NOAO Deep Wide-Field Survey. DOGs are red, obscured galaxies, defined as having R-[24] ge 14 (F_24/F_R ga 1000). Spectroscopy indicates that they are located at 1.5 la z la 2.5. We find strong clustering, with r_0 = 7.40^{+1.27}_{-0.84} Mpc/h for the full F_24 > 0.3 mJy sample. The clustering and space density of the DOGs are consistent with those of submillimeter galaxies, suggestive of a connection between these populations. We find evidence for luminosity-dependent clustering, with the correlation length increasing to r_0 = 12.97^{+4.26}_{-2.64} Mpc/h for brighter (F_24 > 0.6 mJy) DOGs. Bright DOGs also reside in richer environments than fainter ones, suggesting these subsamples may not be drawn from the same parent population. The clustering amplitudes imply average halo masses of log M = 12.2^{+0.3}_{-0.2} Msun for the full DOG sample, rising to log M = 13.0^{+0.4}_{-0.3} Msun for brighter DOGs. In a biased structure formation scenario, the full DOG sample will, on average, evolve into ~ 3 L* present-day galaxies, whereas the most luminous DOGs may evolve into brightest cluster galaxies.
The spectral energy distributions (SED) of dusty galaxies at intermediate redshift may look similar to very high redshift galaxies in the optical/near infrared (NIR) domain. This can lead to the contamination of high redshift galaxy searches based on broad band optical/NIR photometry by lower redshift dusty galaxies as both kind of galaxies cannot be distinguished. The contamination rate could be as high as 50%. {This work shows how the far infrared (FIR) domain can help to recognize likely low-z interlopers in an optical/NIR search for high-z galaxies.} We analyse the FIR SEDs of two galaxies proposed as very high redshift ($z>7$) dropout candidates based on deep Hawk-I/VLT observations. The FIR SEDs are sampled with PACS/Herschel at 100 and 160,$mu$m, with SPIRE/Herschel at 250, 350 and 500,$mu$m and with LABOCA/APEX at 870,$mu$m. We find that redshifts $>7$ would imply extreme FIR SEDs (with dust temperatures $>100$,K and FIR luminosities $>10^{13}$,$L_{odot}$). At z$sim$2, instead, the SEDs of both sources would be compatible with that of typical ULIRGs/SMGs. Considering all the data available for these sources from visible to FIR we re-estimate the redshifts and we find $zsim$1.6--2.5. Due to the strong spectral breaks observed in these galaxies, standard templates from the literature fail to reproduce the visible-near IR part of the SEDs even when additional extinction is included. These sources resemble strongly dust obscured galaxies selected in Spitzer observations with extreme visible-to-FIR colors, and the galaxy GN10 at $z=4$. Galaxies with similar SEDs could contaminate other high redshift surveys.
A substantial fraction of the stellar mass growth across cosmic time occurred within dust-enshrouded environments. Yet, the exact amount of star-forming activity that took place in high-redshift dusty galaxies currently missed by optical surveys has been barely explored. Using the Spitzer observations of COSMOS we determined the fraction of luminous star-forming galaxies at 1.5<z<3 escaping the traditional color selection techniques because of dust extinction, as well as their contribution to the cosmic star formation density at high redshift. We find that the BzK criterion offers an almost complete (~90%) identification of the 24mic sources at 1.4<z<2.5, while the BM/BX criterion miss 50% of the MIPS population. Similarly the criterion based on the presence of a stellar bump in massive sources (so-called IRAC peakers) miss up to 40% of the IR luminosity density and only 25% of the IR energy density at z~2 is produced by Optically-Faint IR-bright galaxies selected based on their extreme mid-IR to optical flux ratios. We conclude that color selections of distant star-forming galaxies must be used with lots of care given the substantial bias they can suffer. In particular, the effect of dust extinction strongly impacts the completeness of identifications at the bright end of the bolometric luminosity function, which implies large and uncertain extrapolations to account for the contribution of dusty galaxies missed by these selections. In the context of forthcoming facilities that will operate at long wavelengths (e.g., $JWST$, ALMA, SAFARI, EVLA, SKA), this emphasizes the importance of minimizing the extinction biases when probing the activity of star formation in the early Universe.