Do you want to publish a course? Click here

The Runts of the Litter: Why planets formed through gravitational instability can only be failed binary stars

276   0   0.0 ( 0 )
 Added by Kaitlin Kratter
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent direct imaging discoveries suggest a new class of massive, distant planets around A stars. These widely separated giants have been interpreted as signs of planet formation driven by gravitational instability, but the viability of this mechanism is not clear cut. In this paper, we first discuss the local requirements for fragmentation and the initial fragment mass scales. We then consider whether the fragments subsequent growth can be terminated within the planetary mass regime. Finally, we place disks in the larger context of star formation and disk evolution models. We find that in order for gravitational instability to produce planets, disks must be atypically cold in order to reduce the initial fragment mass. In addition, fragmentation must occur during a narrow window of disk evolution, after infall has mostly ceased, but while the disk is still sufficiently massive to undergo gravitational instability. Under more typical conditions, disk-born objects will likely grow well above the deuterium burning planetary mass limit. We conclude that if planets are formed by gravitational instability, they must be the low mass tail of the distribution of disk-born companions. To validate this theory, on-going direct imaging surveys must find a greater abundance of brown dwarf and M-star companions to A-stars. Their absence would suggest planet formation by a different mechanism such as core accretion, which is consistent with the debris disks detected in these systems.



rate research

Read More

It has been suggested that planetary radii increase with the stellar mass, for planets below 6 R$_{oplus}$ and host below 1 M$_odot$. In this study, we explore whether this inferred relation between planetary size and the host stars mass can be explained by a larger planetary mass among planets orbiting more massive stars, inflation of the planetary radius due to the difference in stellar irradiation, or different planetary compositions and structures. Using exoplanetary data of planets with measured masses and radii, we investigate the relations between stellar mass and various planetary properties for G- and K- stars, and confirm that more massive stars host larger planets and more massive. We find that the differences in the planetary masses and temperatures are insufficient to explain the measured differences in radii between planets surrounding different stellar types. We show that the larger planetary radii can be explained by a larger fraction of volatile material (H-He atmospheres) among planets surrounding more massive stars. We conclude that planets around more massive stars are larger most probably as a result of larger H-He atmospheres. Our findings imply that planets forming around more massive stars tend to accrete H-He atmospheres more efficiently.
Recent observations of the protoplanetary disc surrounding AB Aurigae have revealed the possible presence of two giant planets in the process of forming. The young measured age of $1-4$Myr for this system allows us to place strict time constraints on the formation histories of the observed planets. Hence we may be able to make a crucial distinction between formation through core accretion (CA) or the gravitational instability (GI), as CA formation timescales are typically Myrs whilst formation through GI will occur within the first $approx10^4-10^5$yrs of disc evolution. We focus our analysis on the $4-13$M$_{rm Jup}$ planet observed at $Rapprox30$AU. We find CA formation timescales for such a massive planet typically exceed the systems age. The planets high mass and wide orbit may instead be indicative of formation through GI. We use smoothed particle hydrodynamic simulations to determine the systems critical disc mass for fragmentation, finding $M_{rm d,crit}=0.3$M$_{odot}$. Viscous evolution models of the discs mass history indicate that it was likely massive enough to exceed $M_{rm d,crit}$ in the recent past, thus it is possible that a young AB Aurigae disc may have fragmented to form multiple giant gaseous protoplanets. Calculations of the Jeans mass in an AB Aurigae-like disc find that fragments may initially form with masses $1.6-13.3$M$_{rm Jup}$, consistent with the planets which have been observed. We therefore propose that the inferred planets in the disc surrounding AB Aurigae may be evidence of planet formation through GI.
We analyze the binary gravitational microlensing event OGLE-2017-BLG-1130 (mass ratio q~0.45), the first published case in which the binary anomaly was only detected by the Spitzer Space Telescope. This event provides strong evidence that some binary signals can be missed by observations from the ground alone but detected by Spitzer. We therefore invert the normal procedure, first finding the lens parameters by fitting the space-based data and then measuring the microlensing parallax using ground-based observations. We also show that the normal four-fold space-based degeneracy in the single-lens case can become a weak eight-fold degeneracy in binary-lens events. Although this degeneracy is resolved in event OGLE-2017-BLG-1130, it might persist in other events.
Planets are observed to orbit the component star(s) of stellar binary systems on so-called circumprimary or circumsecondary orbits, as well as around the entire binary system on so-called circumbinary orbits. Depending on the orbital parameters of the binary system a planet will be dynamically stable if it orbits within some critical separation of the semimajor axis in the circumprimary case, or beyond some critical separation for the circumbinary case. We present N-body simulations of star-forming regions that contain populations of primordial binaries to determine the fraction of binary systems that can host stable planets at various semimajor axes, and how this fraction of stable systems evolves over time. Dynamical encounters in star-forming regions can alter the orbits of some binary systems, which can induce long-term dynamical instabilities in the planetary system and can even change the size of the habitable zone(s) of the component stars. However, the overall fraction of binaries that can host stable planetary systems is not greatly affected by either the assumed binary population, or the density of the star-forming region. Instead, the critical factor in determining how many stable planetary systems exist in the Galaxy is the stellar binary fraction - the more stars that are born as singles in stellar nurseries, the higher the fraction of stable planetary systems.
We simulate the coupled stellar and tidal evolution of short-period binary stars (orbital period $P_{orb} lsim$8 days) to investigate the orbital oscillations, instellation cycles, and orbital stability of circumbinary planets (CBPs). We consider two tidal models and show that both predict an outward-then-inward evolution of the binarys semi-major axis $a_{bin}$ and eccentricity $e_{bin}$. This orbital evolution drives a similar evolution of the minimum CBP semi-major axis for orbital stability. By expanding on previous models to include the evolution of the mass concentration, we show that the maximum in the CBP orbital stability limit tends to occur 100 Myr after the planets form, a factor of 100 longer than previous investigations. This result provides further support for the hypothesis that the early stellar-tidal evolution of binary stars has removed CBPs from short-period binaries. We then apply the models to Kepler-47 b, a CBP orbiting close to its host stars stability limit, to show that if the binarys initial $e_{bin} gsim$0.24, the planet would have been orbiting within the instability zone in the past and probably wouldnt have survived. For stable, hypothetical cases in which the stability limit does not reach a planets orbit, we find that the amplitudes of $a_{bin}$ and $e_{bin}$ oscillations can damp by up to 10% and 50%, respectively. Finally, we consider equal-mass stars with $P_{orb} =$ 7.5 days and compare the HZ to the stability limit. We find that for stellar masses $lsim0.12M_{odot}$, the HZ is completely unstable, even if the binary orbit is circular. For $e_{bin} lsim$0.5, that limit increases to $0.17M_{odot}$, and the HZ is partially destabilized for stellar masses up to $0.45M_{odot}$. These results may help guide searches for potentially habitable CBPs, as well as characterize their evolution and likelihood to support life after they are found.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا