Do you want to publish a course? Click here

An estimate of the local ISW signal, and its impact on CMB anomalies

126   0   0.0 ( 0 )
 Added by John Peacock
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We estimate the local density field in redshift shells to a maximum redshift of z=0.3, using photometric redshifts for the 2MASS galaxy catalogue, matched to optical data from the SuperCOSMOS galaxy catalogue. This density-field map is used to predict the Integrated Sachs-Wolfe (ISW) CMB anisotropies that originate within the volume at z<0.3. We investigate the impact of this estimated ISW foreground signal on large-scale anomalies in the WMAP CMB data. We find that removal of the foreground ISW signal from WMAP data reduces the significance of a number of reported large-scale anomalies in the CMB, including the low quadrupole power and the apparent alignment between the CMB quadrupole and octopole.



rate research

Read More

130 - N. Taburet 2010
If Dark Energy introduces an acceleration in the universal expansion then large scale gravitational potential wells should be shrinking, causing a blueshift in the CMB photons that cross such structures (Integrated Sachs-Wolfe effect, [ISW]). Galaxy clusters are known to probe those potential wells. In these objects, CMB photons also experience inverse Compton scattering off the hot electrons of the intra-cluster medium, and this results in a distortion with a characteristic spectral signature of the CMB spectrum (the so-called thermal Sunyaev-Zeldovich effect, [tSZ]). Since both the ISW and the tSZ effects take place in the same potential wells, they must be spatially correlated. We present how this cross ISW-tSZ signal can be detected in a CMB-data contained way by using the frequency dependence of the tSZ effect in multi frequency CMB experiments like {it Planck}, {em without} requiring the use of external large scale structure tracers data. We find that by masking low redshift clusters, the shot noise level decreases significantly, boosting the signal to noise ratio of the ISW--tSZ cross correlation. We also find that galactic and extragalactic dust residuals must be kept at or below the level of ~0.04 muK^2 at l=10, a limit that is a factor of a few below {it Planck}s expectations for foreground subtraction. If this is achieved, CMB observations of the ISW-tSZ cross correlation should also provide an independent probe for the existence of Dark Energy and the amplitude of density perturbations.
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in orderto characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, $Gmull 10^{-7}$,, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.
Observations of redshifted 21-cm signal from neutral hydrogen (HI) appear to be the most promising probe of the cosmic dark ages. The signal carries information about the thermal state along with density distribution of the intergalactic medium (IGM). The cosmic microwave background radiation (CMBR), through its interaction with charged particles, plays a major role in determining the kinetic and spin temperature of HI gas in the IGM during dark ages. A Spatially fluctuating ionization fraction, which is caused by inhomogeneous recombinations, causes heat transfer from the CMBR to the IGM gas inhomogeneous. We revisit the impact of this inhomogeneous heat transfer on spatial fluctuations in the observed HI 21-cm signal over a large redshift range during dark ages. Our study shows that the effect negatively impacts fluctuations in the HI spin temperature and results in an enhanced HI 21-cm power spectrum. We find that the effect is particularly important during the transition of the gas kinetic temperature being coupled to the CMBR to fully decoupled from it, i.e., in the redshift range $30 lesssim z lesssim 300$. It is found that, on the average the HI power spectrum, $P_{T_b}(k, z)$ is enhanced by $sim 4%$, $sim10 %$ , $sim 20%$, and $sim 30 %$ at redshifts $60$, $90$, $140$, and $200$ respectively at $k=0.1 , {rm Mpc}^{-1}$. The effect becomes even more significant at lower values of $k_{parallel}^2/k^2$ due to the reduced dominance of the peculiar velocity. It is observed that the power spectrum is enhanced by $sim 49%$ and $sim 93%$ at redshifts $140$ and $200$ respectively at $k=0.1 , {rm Mpc}^{-1}$ for $k_{parallel}^2/k^2=0$. This enhancement has a weak $k$-mode dependence.
In this work we present a method to extract the signal induced by the integrated Sachs-Wolfe (ISW) effect in the cosmic microwave background (CMB). It makes use of the Linear Covariance-Based filter introduced by Barreiro et al., and combines CMB data with any number of large-scale structure (LSS) surveys and lensing information. It also exploits CMB polarization to reduce cosmic variance. The performance of the method has been thoroughly tested with simulations taking into account the impact of non-ideal conditions such as incomplete sky coverage or the presence of noise. In particular, three galaxy surveys are simulated, whose redshift distributions peak at low ($z simeq 0.3$), intermediate ($z simeq 0.6$) and high redshift ($z simeq 0.9$). The contribution of each of the considered data sets as well as the effect of a mask and noise in the reconstructed ISW map is studied in detail. When combining all the considered data sets (CMB temperature and polarization, the three galaxy surveys and the lensing map), the proposed filter successfully reconstructs a map of the weak ISW signal, finding a perfect correlation with the input signal for the ideal case and around 80 per cent, on average, in the presence of noise and incomplete sky coverage. We find that including CMB polarization improves the correlation between input and reconstruction although only at a small level. Nonetheless, given the weakness of the ISW signal, even modest improvements can be of importance. In particular, in realistic situations, in which less information is available from the LSS tracers, the effect of including polarisation is larger. For instance, for the case in which the ISW signal is recovered from CMB plus only one survey, and taking into account the presence of noise and incomplete sky coverage, the improvement in the correlation coefficient can be as large as 10 per cent.
Any Dark Energy (DE) or Modified Gravity (MG) model that deviates from a cosmological constant requires a consistent treatment of its perturbations, which can be described in terms of an effective entropy perturbation and an anisotropic stress. We have considered a recently proposed generic parameterisation of DE/MG perturbations and compared it to data from the Planck satellite and six galaxy catalogues, including temperature-galaxy (Tg), CMB lensing-galaxy and galaxy-galaxy (gg) correlations. Combining these observables of structure formation with tests of the background expansion allows us to investigate the properties of DE/MG both at the background and the perturbative level. Our constraints on DE/MG are mostly in agreement with the cosmological constant paradigm, while we also find that the constraint on the equation of state w (assumed to be constant) depends on the model assumed for the perturbation evolution. We obtain $w=-0.92^{+0.20}_{-0.16}$ (95% CL; CMB+gg+Tg) in the entropy perturbation scenario; in the anisotropic stress case the result is $w=-0.86^{+0.17}_{-0.16}$. Including the lensing correlations shifts the results towards higher values of w. If we include a prior on the expansion history from recent Baryon Acoustic Oscillations (BAO) measurements, we find that the constraints tighten closely around $w=-1$, making it impossible to measure any DE/MG perturbation evolution parameters. If, however, upcoming observations from surveys like DES, Euclid or LSST show indications for a deviation from a cosmological constant, our formalism will be a useful tool towards model selection in the dark sector.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا