No Arabic abstract
A Monte Carlo event generator has been developed assuming thermal production of hadrons. The system under consideration is sampled grand canonically in the Boltzmann approximation. A re-weighting scheme is then introduced to account for conservation of charges (baryon number, strangeness, electric charge) and energy and momentum, effectively allowing for extrapolation of grand canonical results to the microcanonical limit. This method has two strong advantages compared to analytical approaches and standard microcanonical Monte Carlo techniques, in that it is capable of handling resonance decays as well as (very) large system sizes.
We suggest an extension of the standard concept of statistical ensembles. Namely, we introduce a class of ensembles with extensive quantities fluctuating according to an externally given distribution. As an example the influence of energy fluctuations on multiplicity fluctuations in limited segments of momentum space for a classical ultra-relativistic gas is considered.
Background: The isospin mixing is an interesting feature of atomic nuclei. It plays a crucial role in astrophysical nuclear reactions. However, it is not straightforward for variational nuclear structure models to describe it. Purpose: We propose a tractable method to describe the isospin mixing within a framework of the generator coordinate method and demonstrate its usability. Method: We generate the basis wave functions by applying the Fermi transition operator to the wave functions of isobars. The superposition of these basis wave functions and variationally obtained wave functions quantitatively describes the isospin mixing. Results: Using 14N as an example, we demonstrate that our method reasonably describes both T = 0 and 1 states and their mixing. Energy spectrum and E1 transition strengths are compared with the experimental data to confirm isospin mixing. Conclusion: The proposed method is effective enough to describe isospin mixing and is useful, for example, when we discuss {alpha} capture reactions of N = Z nuclei.
The various experimental data at AGS, SPS and RHIC energies on hadron particle yields for central heavy ion collisions are investigated by employing a generalized statistical density operator, that allows for a well-defined anisotropic local momentum distribution for each particle species, specified by a common streaming velocity parameter. The individual particle ratios are rather insensitive to a change in this new intensive parameter. This leads to the conclusion that the reproduction of particle ratios by a statistical treatment does not imply the existence of a fully isotropic local momentum distribution at hadrochemical freeze-out, i.e. a state of almost complete thermal equilibrium.
The rapidity densities in Au-Au collisions at center-of-mass energies 200 and 130 A GeV measured at Relativistic Heavy-Ion Collider by STAR and PHENIX collaborations are analyzed within the statistical hadronization model at chemical freeze-out. We find that the model can describe the experimental rapidity densities well. The corresponding chemical freeze-out parameters are determined and they are seen to be in agreement with what we expect from our previous analyzes at lower beam energies at AGS and SPS.
The extraction of neutrino mixing parameters from accelerator-based neutrino oscillation experiments relies on proper modeling of neutrino-nucleus scattering processes using neutrino-interaction event generators. Experimental tests of these generators are difficult due to the broad range of neutrino energies produced in accelerator-based beams and the low statistics of current experiments. Here we overcome these difficulties by exploiting the similarity of neutrino and electron interactions with nuclei to test neutrino event generators using high-precision inclusive electron scattering data. To this end, we revised the electron-scattering mode of the GENIE event generator ($e$-GENIE) to include electron-nucleus bremsstrahlung radiation effects and to use, when relevant, the exact same physics models and model parameters, as the standard neutrino-scattering version. We also implemented new models for quasielastic (QE) scattering and meson exchange currents (MEC) based on the theory-inspired SuSAv2 approach. Comparing the new $e$-GENIE predictions with inclusive electron scattering data, we find an overall adequate description of the data in the QE- and MEC-dominated lower energy transfer regime, especially when using the SuSAv2 models. Higher energy transfer-interactions, which are dominated by resonance production, are still not well modeled by $e$-GENIE.