No Arabic abstract
Experiments on ion acceleration by irradiation of ultra-thin diamond-like carbon (DLC) foils, with thicknesses well below the skin depth, irradiated with laser pulses of ultra-high contrast and linear polarization, are presented. A maximum energy of 13MeV for protons and 71MeV for carbon ions is observed with a conversion efficiency of > 10%. Two-dimensional particle-in-cell (PIC) simulations reveal that the increase in ion energies can be attributed to a dominantly collective rather than thermal motion of the foil electrons, when the target becomes transparent for the incident laser pulse.
By using multi-dimensional particle-in-cell simulation, we present a new regime of stable proton beam acceleration which takes place when a two-specie shaped foil is illuminated by a circularly polarized laser pulse. It is observed that the lighter protons are nearly-instantaneously separated from the heavier carbon ions due to the charge-to-mass ratio difference. The heavy-ions layer extensively expands in space and acts to buffer the proton layer from the Rayleigh-Taylor-like (RT) instability that would have otherwise degraded the proton beam acceleration. A simple three-interface model is formulated to qualitatively explain the stabilization of the light-ions acceleration. Due to the absence of the RT-like instability, the produced high quality mono-energetic proton bunch can be well maintained even after the laser-foil interaction concludes.
The acceleration of ions from ultra-thin foils has been investigated using 250 TW, sub-ps laser pulses, focused on target at intensities up to $3times10^{20} Wcm2$. The ion spectra show the appearance of narrow band features for proton and Carbon peaked at higher energy (in the 5-10 MeV/nucleon range) and with significantly higher flux than previously reported. The spectral features, and their scaling with laser and target parameters, provide evidence of a multispecies scenario of Radiation Pressure Acceleration in the Light Sail mode, as confirmed by analytical estimates and 2D Particle In Cell simulations. The scaling indicates that monoenergetic peaks with more than 100 MeV/nucleon energies are obtainable with moderate improvements of the target and laser characteristics, which are within reach of ongoing technical developments.
Although the interaction of a flat-foil with currently available laser intensities is now considered a routine process, during the last decade emphasis is given to targets with complex geometries aiming on increasing the ion energy. This work presents a target geometry where two symmetric side-holes and a central-hole are drilled into the foil. A study of the various side-holes and central-hole length combinations is performed with 2-dimensional particle-in-cell simulations for polyethylene targets and a laser intensity of 5.2x10^21 W cm^-2. The holed-targets show a remarkable increase of the conversion efficiency, which corresponds to a different target configuration for electrons, protons and carbon ions. Furthermore, diffraction of the laser pulse leads to a directional high energy electron beam, with a temperature of ~40 MeV or seven times higher than in the case of a flat-foil. The higher conversion efficiency consequently leads to a significant enhancement of the maximum proton energy from holed-targets.
Dependence of the energy of ions accelerated during interaction of the laser pulse obliquelly incident on the thin foil target on the laser polarization is studied experimentally and theoretically. We found that the ion energy being maximal for the p-polarization gradually decreases when the pulse becomes s-polarized. The experimentally found dependences of the ion energy are explained by invoking the anomalous electron heating which results in high electrostatic potential formation at the target surface. Anomalous heating of electrons beyond the energy of quiver motion in the laser field is described within the framework of theoretical model of driven oscillator with a step-like nonlinearity. We have demonstrated that the electron anomalous heating can be realized in two regimes: nonlinear resonance and stochastic heating, depending on the extent of stochasticity. We have found the accelerated ion energy scaling determined by the laser intensity, pulse duration, polarization angle and incident angle.
In this letter we report on an experimental study of high harmonic radiation generated in nanometer-scale foil targets irradiated under normal incidence. The experiments constitute the first unambiguous observation of odd-numbered relativistic harmonics generated by the $vec{v}timesvec{B}$ component of the Lorentz force verifying a long predicted property of solid target harmonics. Simultaneously the observed harmonic spectra allow in-situ extraction of the target density in an experimental scenario which is of utmost interest for applications such as ion acceleration by the radiation pressure of an ultraintense laser.