Do you want to publish a course? Click here

Models of Neptune-Mass Exoplanets: Emergent Fluxes and Albedos

248   0   0.0 ( 0 )
 Added by David Spiegel
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

There are now many known exoplanets with Msin(i) within a factor of two of Neptunes, including the transiting planets GJ436b and HAT-P-11b. Planets in this mass-range are different from their more massive cousins in several ways that are relevant to their radiative properties and thermal structures. By analogy with Neptune and Uranus, they are likely to have metal abundances that are an order of magnitude or more greater than those of larger, more massive planets. This increases their opacity, decreases Rayleigh scattering, and changes their equation of state. Furthermore, their smaller radii mean that fluxes from these planets are roughly an order of magnitude lower than those of otherwise identical gas giant planets. Here, we compute a range of plausible radiative equilibrium models of GJ436b and HAT-P-11b. In addition, we explore the dependence of generic Neptune-mass planets on a range of physical properties, including their distance from their host stars, their metallicity, the spectral type of their stars, the redistribution of heat in their atmospheres, and the possible presence of additional optical opacity in their upper atmospheres.



rate research

Read More

Precise atmospheric observations have been made for a growing sample of warm Neptunes. Here we investigate the correlations between these observations and a large number of system parameters to show that, at 95% confidence, the amplitude of a warm Neptunes spectral features in transmission correlates with either its equilibrium temperature (T_eq) or its bulk H/He mass fraction (f_HHe) --- in addition to the standard kT/mg scaling. These correlations could indicate either more optically-thick, photochemically-produced hazes at lower T_eq and/or higher-metallicity atmospheres for planets with smaller radii and lower f_HHe. %Since hazes must exist in some of these planets, we favor the former explanation. We derive an analytic relation to estimate the observing time needed with JWST/NIRISS to confidently distinguish a nominal gas giants transmission spectrum from a flat line. Using this tool, we show that these possible atmospheric trends could reduce the number of expected TESS planets accessible to JWST spectroscopy by up to a factor of eight. Additional observations of a larger sample of planets are required to confirm these trends in atmospheric properties as a function of planet or system quantities. If these trends can be confidently identified, the community will be well-positioned to prioritize new targets for atmospheric study and eventually break the complex degeneracies between atmospheric chemistry, composition, and cloud properties.
We present new Spitzer transit observations of four K2 transiting sub-Neptunes: K2-36c, K2-79b, K2-167b, and K2-212b. We derive updated orbital ephemerides and radii for these planets based on a joint analysis of the Spitzer, TESS, and K2 photometry. We use the EVEREST pipeline to provide improved K2 photometry, by detrending instrumental noise and K2s pointing jitter. We used a pixel level decorrelation method on the Spitzer observations to reduce instrumental systematic effects. We modeled the effect of possible blended eclipsing binaries, seeking to validate these planets via the achromaticity of the transits (K2 versus Spitzer). However, we find that Spitzers signal-to-noise ratio for these small planets is insufficient to validate them via achromaticity. Nevertheless, by jointly fitting radii between K2 and Spitzer observations, we were able to independently confirm the K2 radius measurements. Due to the long time baseline between the K2 and Spitzer observations, we were also able to increase the precision of the orbital periods compared to K2 observations alone. The improvement is a factor of 3 for K2-36c, and more than an order of magnitude for the remaining planets. Considering possible JWST observations in 1/2023, previous 1 sigma uncertainties in transit times for these planets range from 74 to 434 minutes, but we have reduced them to the range of 8 to 23 minutes.
Studying the albedos of the planets and moons of the Solar System dates back at least a century. Of particular interest is the relationship between the albedo measured at superior conjunction, known as the ``geometric albedo, and the albedo considered over all orbital phase angles, known as the ``spherical albedo. Determining the relationship between the geometric and spherical albedos usually involves complex numerical calculations and closed-form solutions are restricted to simple reflection laws. Here we report the discovery of closed-form solutions for the geometric albedo and integral phase function, which apply to any law of reflection that only depends on the scattering angle. The shape of a reflected light phase curve, quantified by the integral phase function, and the secondary eclipse depth, quantified by the geometric albedo, may now be self-consistently inverted to retrieve globally averaged physical parameters. Fully Bayesian phase curve
100 - A. Kaminski 2018
Despite their activity, low-mass stars are of particular importance for the search of exoplanets by the means of Doppler spectroscopy, as planets with lower masses become detectable. We report on the discovery of a planetary companion around HD 180617, a bright J = 5.58 mag, low-mass M = 0.45 M_{sun} star of spectral type M2.5 V. The star, located at a distance of 5.9 pc, is the primary of the high proper motion binary system containing vB 10, a star with one of the lowest masses known in most of the twentieth century. Our analysis is based on new radial velocity (RV) measurements made at red-optical wavelengths provided by the high-precision spectrograph CARMENES, which was designed to carry out a survey for Earth-like planets around M dwarfs. The available CARMENES data are augmented by archival Doppler measurements from HIRES and HARPS. Altogether, the RVs span more than 16 years. The modeling of the RV variations, with a semi-amplitude of K = 2.85-0.25/+0.16m/s yields a Neptune-like planet with a minimum mass of 12.2-1.4/+1.0 M_{Earth} on a 105.90-0.10/+0.09d circumprimary orbit, which is partly located in the host stars habitable zone. The analysis of time series of common activity indicators does not show any dependence on the detected RV signal. The discovery of HD 180617 b not only adds information to a currently hardly filled region of the mass-period diagram of exoplanets around M dwarfs, but the investigated system becomes the third known binary consisting of M dwarfs and hosting an exoplanet in an S-type configuration. Its proximity makes it an attractive candidate for future studies.
218 - F. Sohl , F. W. Wagner , H. Rauer 2012
Mass and radius of planets transiting their host stars are provided by radial velocity and photometric observations. Structural models of solid exoplanet interiors are then constructed by using equations of state for the radial density distribution, which are compliant with the thermodynamics of the high-pressure limit. However, to some extent those structural models suffer from inherent degeneracy or non-uniqueness problems owing to a principal lack of knowledge of the internal differentiation state and/or the possible presence of an optically thick atmosphere. We here discuss the role of corresponding measurement errors, which adversely affect determinations of a planets mean density and bulk chemical composition. Precise measurements of planet radii will become increasingly important as key observational constraints for radial density models of individual solid low-mass exoplanets or super-Earths.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا