Do you want to publish a course? Click here

Fast Winds and Mass Loss from Metal-Poor Field Giants

131   0   0.0 ( 0 )
 Added by Andrea Dupree
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spectra of the He I 10830 Angstrom line were obtained with NIRSPEC on the Keck 2 telescope for metal-deficient field giant stars. This line is ubiquitous in stars with T_eff greater than 4500K and M_V fainter than -1.5. Fast outflows are detected from the majority of stars and about 40 percent of the outflows have sufficient speed to allow escape of material from the star as well as from a globular cluster. Outflow speeds and line strengths do not depend on metallicity suggesting the driving mechanism for these winds derives from magnetic and/or hydrodynamic processes. Gas outflows are present in every luminous giant, but are not detected in all stars of lower luminosity indicating possible variability. Mass loss rates ranging from 3X10(-10) to 6X10(-8) solar mass/yr estimated from the Sobolev approximation represent values with evolutionary significance for red giant branch (RGB) and red horizontal branch (RHB) stars. We estimate that 0.2 M_sun will be lost on the RGB, and the torque of this wind can account for observations of slowly rotating RHB stars in the field. About 0.1-0.2 M_sun will be lost on the RHB itself. This first empirical determination of mass loss on the RHB may contribute to the appearance of extended horizontal branches in globular clusters. The spectra appear to resolve the problem of missing intracluster material in globular clusters. Opportunities exist for wind smothering of dwarf stars by winds from the evolved population, possibly leading to surface pollution in regions of high stellar density.



rate research

Read More

The recent discovery of high-redshift (z > 6) supermassive black holes (SMBH) favors the formation of massive seed BHs in protogalaxies. One possible scenario is formation of massive stars ~ 1e3-1e4 Msun via runaway stellar collisions in a dense cluster, leaving behind massive BHs without significant mass loss. We study the pulsational instability of massive stars with the zero-age main-sequence (ZAMS) mass Mzams/Msun = 300-3000 and metallicity Z/Zsun = 0-0.1, and discuss whether or not pulsation-driven mass loss prevents massive BH formation. In the MS phase, the pulsational instability excited by the epsilon-mechanism grows in ~ 1e3 yrs. As the stellar mass and metallicity increase, the mass-loss rate increases to < 1e-3 Msun/yr. In the red super-giant (RSG) phase, the instability is excited by the kappa-mechanism operating in the hydrogen ionization zone and grows more rapidly in ~ 10 yrs. The RSG mass-loss rate is almost independent of metallicity and distributes in the range of ~ 1e-3-1e-2 Msun/yr. Conducting the stellar structure calculations including feedback due to pulsation-driven winds, we find that the stellar models of Mzams/Msun = 300-3000 can leave behind remnant BHs more massive than ~ 200-1200 Msun. We conclude that massive merger products can seed monster SMBHs observed at z > 6.
We report the discovery of eight lithium-rich field giants found in a high resolution spectroscopic sample of over 700 metal-poor stars ([Fe/H]<-0.5) selected from the RAVE survey. The majority of the Li-rich giants in our sample are very metal-poor ([Fe/H]<-1.9), and have a Li abundance (in the form of 7Li), A(Li)=log(n(Li)/n(H))+12, between 2.30 and 3.63, well above the typical upper red giant branch limit, A(Li)<0.5, while two stars, with A(Li)~1.7-1.8, show similar lithium abundances to normal giants at the same gravity. We further included two metal-poor, Li-rich globular cluster giants in our sample, namely the previously discovered M3-IV101 and newly discovered (in this work) M68-A96. This comprises the largest sample of metal-poor Li-rich giants to date. We performed a detailed abundance analysis of all stars, finding that the majority our sample stars have elemental abundances similar to that of Li-normal halo giants. Although the evolutionary phase of each Li-rich giant cannot be definitively determined, the Li-rich phase is likely connected to extra mixing at the red giant branch bump or early asymptotic giant branch that triggers cool bottom processing in which the bottom of the outer convective envelope is connected to the H-burning shell in the star. The surface of a star becomes Li-enhanced as 7Be (which burns to 7Li) is transported to the stellar surface via the Cameron-Fowler mechanism. We discuss and discriminate among several models for the extra mixing that can cause Li-production, given the detailed abundances of the Li-rich giants in our sample.
A non-LTE analysis of K I resonance lines at 7664.91 and 7698.97 A was carried out for 15 red giants belonging to three globular clusters of different metallicity (M 4, M 13, and M 15) along with two reference early-K giants (rho Boo and alpha Boo), in order to check whether the K abundances are uniform within a cluster and to investigate the behavior of [K/Fe] ratio at the relevant metallicity range of -2.5 <[Fe/H] < -1. We confirmed that [K/H] (as well as [Fe/H]) is almost homogeneous within each cluster to a precision of < ~0.1 dex, though dubiously large deviations are exceptionally seen for two peculiar stars showing signs of considerably increased turbulence in the upper atmosphere. The resulting [K/Fe] ratios are mildly supersolar by a few tenths of dex for three clusters, tending to gradually increase from ~+0.1-0.2 at [Fe/H] ~-1 to ~+0.3 at [Fe/H] ~ -2.5. This result connects reasonably well with the [K/Fe] trend of disk stars (-1 < [Fe/H]) and that of extremely metal-poor stars (-4 <[Fe/H] < -2.5). That is, [K/Fe] appears to continue a gradual increase from [Fe/H]~0 toward a lower metallicity regime down to [Fe/H]~-3, where a broad maximum of [K/Fe]~+0.3-0.4 is attained, possibly followed by a slight downturn at [Fe/H]<~-3.
We present the chemical compositions of four K giants CS 22877-1, CS 22166-16, CS22169-35 and BS 16085 - 0050 that have [Fe/H] in the range -2.4 to -3.1. Metal-poor stars with [Fe/H] < -2.5 are known to exhibit considerable star - to - star variations of many elements. This quartet confirms this conclusion. CS 22877-1 and CS 22166-16 are carbon-rich. There is significant spread for [$alpha$/Fe] within our sample where [$alpha$/Fe] is computed from the mean of the [Mg/Fe], and [Ca/Fe] ratios. BS 16085 - 0050 is remarkably $alpha$ enriched with a mean [$alpha$/Fe] of $+$0.7 but CS 22169-35 is $alpha$-poor. The aluminium abundance also shows a significant variation over the sample. A parallel and unsuccessful search among high-velocity late-type stars for metal-poor stars is described.
During the red giant phase, stars loose mass at the highest rate since birth. The mass-loss rate is not fixed, but varies from star-to-star by up to 5%, resulting in variations of the stars luminosity at the tip of the red giant branch (TRGB). Also, most stars, during this phase, engulf part of their planetary system, including their gas giant planets and possibly brown dwarfs. Gas giant planet masses range between 0.1 to 2% of the host star mass. The engulfing of their gas giants planets can modify their luminosity at the TRGB, i.e. the point at which the He-core degeneracy is removed. We show that the increase in mass of the star by the engulfing of the gas giant planets only modifies the luminosity of a star at the TRGB by less than 0.1%, while metallicity can modify the luminosity of a star at the TRGB by up to 0.5%. However, the increase in turbulence of the convective envelope of the star, has a more dramatic effect, on the stars luminosity, which we estimate could be as large as 5%. The effect is always in the direction to increase the turbulence and thus the mixing length which turns into a systematic decrease of the luminosity of the star at the TRGB. We find that the star-to-star variation of the mass-loss rate will dominate the variations in the luminosity of the TRGB with a contribution at the 5% level. If the star-to-star variation is driven by environmental effects, the same effects can potentially create an environmentally-driven mean effect on the luminosity of the tip of the red giant branch of a galaxy. Engulfment of a brown dwarf will have a more dramatic effect. Finally, we touch upon how to infer the frequency, and identify the engulfment, of exoplanets in low-metallicity RGB stars through high resolution spectroscopy as well as how to quantify mass loss rate distributions from the morphology of the horizontal branch.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا