Do you want to publish a course? Click here

Confusing non-zero theta_13 with non-standard interactions in the solar neutrino sector

131   0   0.0 ( 0 )
 Added by Antonio Palazzo
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Solar and KamLAND data are in slight tension when interpreted in the standard two-flavor oscillations framework and this may be alleviated allowing for a non-zero value of the mixing angle theta_13. Here we show that, likewise, non-standard flavor-changing interactions (FCI), possibly intervening in the propagation of solar neutrinos, are equally able to alleviate this tension and therefore constitute a potential source of confusion in the determination of theta_13. By performing a full three-flavor analysis of solar and KamLAND data in presence of FCI we provide a quantitative description of the degeneracy existing between theta_13 and the vectorial coupling eps_etau^dV characterizing the non-standard transitions between nu_e and nu_tau in the forward scattering process with d-type quarks. We find that couplings with magnitude eps_etau^dV ~ 10%, compatible with the existing bounds, can mimic the non-zero values of theta_13 indicated by the latest analyses.



rate research

Read More

We discuss the effects of non-standard neutrino interactions on muon rates in high statistics atmospheric neutrino oscillation experiments like IceCube DeepCore. We concentrate on the mu-tau sector, which is presently the least constrained. It is shown that the magnitude of the effects depends strongly on the sign of the Epsilon_MuTau parameter describing this non-standard interactions. A simple analytic model is used to understand the parameter space where differences between the two signs are maximized. We discuss how this effect is partially degenerate with changing the neutrino mass hierarchy, as well as how this degeneracy could be lifted.
We discuss novel ways in which neutrino oscillation experiments can probe dark matter. In particular, we focus on interactions between neutrinos and ultra-light (fuzzy) dark matter particles with masses of order $10^{-22}$ eV. It has been shown previously that such dark matter candidates are phenomenologically successful and might help ameliorate the tension between predicted and observed small scale structures in the Universe. We argue that coherent forward scattering of neutrinos on fuzzy dark matter particles can significantly alter neutrino oscillation probabilities. These effects could be observable in current and future experiments. We set new limits on fuzzy dark matter interacting with neutrinos using T2K and solar neutrino data, and we estimate the sensitivity of reactor neutrino experiments and of future long-baseline accelerator experiments. These results are based on detailed simulations in GLoBES. We allow the dark matter particle to be either a scalar or a vector boson. In the latter case, we find potentially interesting connections to models addressing various $B$ physics anomalies.
The Borexino detector measures solar neutrino fluxes via neutrino-electron elastic scattering. Observed spectra are determined by the solar-$ u_{e}$ survival probability $P_{ee}(E)$, and the chiral couplings of the neutrino and electron. Some theories of physics beyond the Standard Model postulate the existence of Non-Standard Interactions (NSIs) which modify the chiral couplings and $P_{ee}(E)$. In this paper, we search for such NSIs, in particular, flavor-diagonal neutral current interactions that modify the $ u_e e$ and $ u_tau e$ couplings using Borexino Phase II data. Standard Solar Model predictions of the solar neutrino fluxes for both high- and low-metallicity assumptions are considered. No indication of new physics is found at the level of sensitivity of the detector and constraints on the parameters of the NSIs are placed. In addition, with the same dataset the value of $sin^2theta_W$ is obtained with a precision comparable to that achieved in reactor antineutrino experiments.
183 - O. G. Miranda , H. Nunokawa 2015
Neutrino oscillations have become well-known phenomenon; the measurements of neutrino mixing angles and mass squared differences are continuously improving. Future oscillation experiments will eventually determine the remaining unknown neutrino parameters, namely, the mass ordering, normal or inverted, and the CP-violating phase. On the other hand, the absolute mass scale of neutrinos could be probed by cosmological observations, single beta decay as well as by neutrinoless double beta decay experiments. Furthermore, the last one may shed light on the nature of neutrinos, Dirac or Majorana, by measuring the effective Majorana mass of neutrinos. However, the neutrino mass generation mechanism remains unknown. A well-motivated phenomenological approach to search for new physics, in the neutrino sector, is that of non-standard interactions. In this short review, the current constraints in this picture, as well as the perspectives from future experiments, are discussed.
We discuss the sensitivity reach of a neutrino factory measurement to non-standard neutrino interactions (NSI), which may exist as a low-energy manifestation of physics beyond the Standard Model. We use the muon appearance mode u_e --> u_mu and consider two detectors, one at 3000 km and the other at 7000 km. Assuming the effects of NSI at the production and the detection are negligible, we discuss the sensitivities to NSI and the simultaneous determination of theta_{13} and delta by examining the effects in the neutrino propagation of various systems in which two NSI parameters epsilon_{alpha beta} are switched on. The sensitivities to off-diagonal epsilons are found to be excellent up to small values of theta_{13}. We demonstrate that the two-detector setting is powerful enough to resolve the theta_{13}-NSI confusion problem. We believe that the results obtained in this paper open the door to the possibility of using neutrino factory as a discovery machine for NSI while keeping its primary function of performing precision measurements of the lepton mixing parameters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا