Do you want to publish a course? Click here

The PRIMA fringe sensor unit

115   0   0.0 ( 0 )
 Added by Johannes Sahlmann
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Fringe Sensor Unit (FSU) is the central element of the Phase Referenced Imaging and Micro-arcsecond Astrometry (PRIMA) dual-feed facility and provides fringe sensing for all observation modes, comprising off-axis fringe tracking, phase referenced imaging, and high-accuracy narrow-angle astrometry. It is installed at the Very Large Telescope Interferometer (VLTI) and successfully servoed the fringe tracking loop during the initial commissioning phase. Unique among interferometric beam combiners, the FSU uses spatial phase modulation in bulk optics to retrieve real-time estimates of fringe phase after spatial filtering. A R=20 spectrometer across the K-band makes the retrieval of the group delay signal possible. The FSU was integrated and aligned at the VLTI in summer 2008. It yields phase and group delay measurements at sampling rates up to 2 kHz, which are used to drive the fringe tracking control loop. During the first commissioning runs, the FSU was used to track the fringes of stars with K-band magnitudes as faint as m_K=9.0, using two VLTI Auxiliary Telescopes (AT) and baselines of up to 96 m. Fringe tracking using two Very Large Telescope (VLT) Unit Telescopes (UT) was demonstrated. During initial commissioning and combining stellar light with two ATs, the FSU showed its ability to improve the VLTI sensitivity in K-band by more than one magnitude towards fainter objects, which is of fundamental importance to achieve the scientific objectives of PRIMA.



rate research

Read More

The fringe sensor unit (FSU) is the central element of the phase referenced imaging and micro-arcsecond astrometry (PRIMA) dual-feed facility for the Very Large Telescope interferometer (VLTI). It has been installed at the Paranal observatory in August 2008 and is undergoing commissioning and preparation for science operation. Commissioning observations began shortly after installation and first results include the demonstration of spatially encoded fringe sensing and the increase in VLTI limiting magnitude for fringe tracking. However, difficulties have been encountered because the FSU does not incorporate real-time photometric correction and its fringe encoding depends on polarisation. These factors affect the control signals, especially their linearity, and can disturb the tracking control loop. To account for this, additional calibration and characterisation efforts are required. We outline the instrument concept and give an overview of the commissioning results obtained so far. We describe the effects of photometric variations and beam-train polarisation on the instrument operation and propose possible solutions. Finally, we update on the current status in view of the start of astrometric science operation with PRIMA.
In a few years, the second generation instruments of the Very Large Telescope Interferometer (VLTI) will routinely provide observations with 4 to 6 telescopes simultaneously. To reach their ultimate performance, they will need a fringe sensor capable to measure in real time the randomly varying optical paths differences. A collaboration between LAOG (PI institute), IAGL, OCA and GIPSA-Lab has proposed the Planar Optics Phase Sensor concept to ESO for the 2nd Generation Fringe Tracker. This concept is based on the integrated optics technologies, enabling the conception of extremely compact interferometric instruments naturally providing single-mode spatial filtering. It allows operations with 4 and 6 telescopes by measuring the fringes position thanks to a spectrally dispersed ABCD method. We present here the main analysis which led to the current concept as well as the expected on-sky performance and the proposed design.
PHASECam is the fringe tracker for the Large Binocular Telescope Interferometer (LBTI). It is a near-infrared camera which is used to measure both tip/tilt and fringe phase variations between the two adaptive optics (AO) corrected apertures of the Large Binocular Telescope (LBT). Tip/tilt and phase sensing are currently performed in the $H$ (1.65 $mu$m) and $K$ (2.2 $mu$m) bands at 1 kHz, but only the $K$-band phase telemetry is used to send corrections to the system in order to maintain fringe coherence and visibility. However, due to the cyclic nature of the fringe phase, only the phase, modulo 360 deg, can be measured. PHASECams phase unwrapping algorithm, which attempts to mitigate this issue, occasionally fails in the case of fast, large phase variations or low signal-to-noise ratio. This can cause a fringe jump, in which case the OPD correction will be incorrect by a wavelength. This can currently be manually corrected by the operator. However, as the LBTI commissions further modes which require robust, active phase control and for which fringe jumps are harder to detect, including multi-axial (Fizeau) interferometry and dual-aperture non-redundant aperture masking interferometry, a more reliable and automated solution is desired. We present a multi-wavelength method of fringe jump capture and correction which involves direct comparison between the $K$-band and $H$-band phase telemetry. We demonstrate the method utilizing archival PHASECam telemetry, showing it provides a robust, reliable way of detecting fringe jumps which can potentially recover a significant fraction of the data lost to them.
In the summer of 2011, the first on-sky astrometric commissioning of PRIMA-Astrometry delivered a performance of 3 m for a 10 separation on bright objects, orders of magnitude away from its exoplanet requirement of 50 {mu} ~ 20 {mu} on objects as faint as 11 mag ~ 13 mag in K band. This contribution focuses on upgrades and characterizations carried out since then. The astrometric metrology was extended from the Coude focus of the Auxillary Telescopes to their secondary mirror, in order to reduce the baseline instabilities and improve the astrometric performance. While carrying out this extension, it was realized that the polarization retardance of the star separator derotator had a major impact on both the astrometric metrology and the fringe sensors. A local compensation of this retardance and the operation on a symmetric baseline allowed a new astrometric commissioning. In October 2013, an improved astrometric performance of 160 {mu} was demonstrated, still short of the requirements. Instabilities in the astrometric baseline still appear to be the dominating factor. In preparation to a review held in January 2014, a plan was developed to further improve the astrometric and faint target performance of PRIMA Astrometry. On the astrometric aspect, it involved the extension of the internal longitudinal metrology to primary space, the design and implementation of an external baseline metrology, and the development of an astrometric internal fringes mode. On the faint target aspect, investigations of the performance of the fringe sensor units and the development of an AO system (NAOMI) were in the plan. Following this review, ESO decided to take a proposal to the April 2014 STC that PRIMA be cancelled, and that ESO resources be concentrated on ensuring that Gravity and Matisse are a success. This proposal was recommended by the STC in May 2014, and endorsed by ESO.
The Extrasolar Planet Search with PRIMA project (ESPRI) aims at characterising and detecting extrasolar planets by measuring the host stars reflex motion using the narrow-angle astrometry capability of the PRIMA facility at the Very Large Telescope Interferometer. A first functional demonstration of the astrometric mode was achieved in early 2011. This marked the start of the astrometric commissioning phase with the purpose of characterising the instruments performance, which ultimately has to be sufficient for exoplanet detection. We show results obtained from the observation of bright visual binary stars, which serve as test objects to determine the instruments astrometric precision, its accuracy, and the plate scale. Finally, we report on the current status of the ESPRI project, in view of starting its scientific programme.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا