No Arabic abstract
Recent observations of the luminosity-red shift relation of distant type Ia supernovae established the fact that the expansion of the universe is accelerated. This is interpreted by saying that there exists some kind of agent (called dark energy), which exerts an overall repulsive effect on ordinary matter. Dark energy contributes today in the amount of about 73 % to the total energy content of the universe, and its spatial distribution is compatible with perfect uniformity. The simplest possible explanation for dark energy is to assume that it is just a universal constant, the so called cosmological constant. This would mean that the background arena for all natural phenomena, once all physical matter-energy has been ideally removed, is the de Sitter space time. Thus, the Poincare group should be replaced by the de Sitter group, and one is naturally led to a reformulation of the theory of special relativity on these grounds. The absence of a privileged class of equivalent frames (inertial frames) suggests that, in de Sitter relativity it would be desirable, to characterize significant physical quantities in an intrinsic way, namely in a manner independent of the choice of any particular coordinate patch. In this talk we would like to show how this can be accomplished for any set of independent conserved quantities along the geodesic motion of a free de Sitter particle. These quantities allow for a natural discussion of classical pointlike scattering and decay processes.
We construct conserved quantities in pure Lovelock gravity for both static and dynamic Vaydia-type black holes with AdS, dS and flat asymptotics, applying field-theoretical formalism developed earlier. Global energy (where applicable), quasi-local energy together with fluxes of these quantities are presented for both types of black holes, considering asymptotic spacetime as background. The same quantities are constructed for dynamic black holes on the background of the related static black holes. Besides, for the dynamic black holes, energy densities and densities of energy flux are calculated in the frame of freely and radially falling observer on the background of the related static black holes. All the constructed energetic characteristics are analyzed and discussed in detail.
When a measurement is made on a system that is not in an eigenstate of the measured observable, it is often assumed that some conservation law has been violated. Discussions of the effect of measurements on conserved quantities often overlook the possibility of entanglement between the measured system and the preparation apparatus. The preparation of a system in any particular state necessarily involves interaction between the apparatus and the system. Since entanglement is a generic result of interaction, as shown by Gemmer and Mahler[1], and by Durt[2,3] one would expect some nonzero entanglement between apparatus and measured system, even though the amount of such entanglement is extremely small. Because the apparatus has an enormous number of degrees of freedom relative to the measured system, even a very tiny difference between the apparatus states that are correlated with the orthogonal states of the measured system can be sufficient to account for the perceived deviation from strict conservation of the quantity in question. Hence measurements need not violate conservation laws.
We present the first detailed study of the kinematics of free relativistic particles whose symmetries are described by a quantum deformation of the de Sitter algebra, known as $q$-de Sitter Hopf algebra. The quantum deformation parameter is a function of the Planck length $ell$ and the de Sitter radius $H^{-1}$, such that when the Planck length vanishes, the algebra reduces to the de Sitter algebra, while when the de Sitter radius is sent to infinity one recovers the $kappa$-Poincare Hopf algebra. In the first limit the picture is that of a particle with trivial momentum space geometry moving on de Sitter spacetime, in the second one the picture is that of a particle with de Sitter momentum space geometry moving on Minkowski spacetime. When both the Planck length and the inverse of the de Sitter radius are non-zero, effects due to spacetime curvature and non-trivial momentum space geometry are both present and affect each other. The particles motion is then described in a full phase space picture. We find that redshift effects that are usually associated to spacetime curvature become energy-dependent. Also, the energy dependence of particles travel times that is usually associated to momentum space non-trivial properties is modified in a curvature-dependent way.
Conserved quantities are crucial in quantum physics. Here we discuss a general scenario of Hamiltonians. All the Hamiltonians within this scenario share a common conserved quantity form. For unitary parametrization processes, the characteristic operator of this scenario is analytically provided, as well as the corresponding quantum Fisher information (QFI). As the application of this scenario, we focus on two classes of Hamiltonians: su(2) category and canonical category. Several specific physical systems in these two categories are discussed in detail. Besides, we also calculate an alternative form of QFI in this scenario.
We provide a unified semiclassical theory for the conserved current of nonconserved quantities, and manifest it in two physical contexts: the spin current of Bloch electrons and the charge current of mean-field Bogoliubov quasiparticles. Several longstanding problems that limit the playground of the conserved spin current of electrons are solved. We reveal that the hitherto overlooked torque quadrupole density and Berry phase correction to the torque dipole density are essential to assure a circulating spin current with vanishing net flow at equilibrium. The band geometric origin of bulk spin transport is ascertained to be the momentum space spin texture and Berry curvature instead of the spin Berry curvature, paving the way for material related studies. In superconductors the attained conserved charge current corresponds to the quasiparticle charge current renormalized by the condensate backflow. Its circulation at equilibrium gives an orbital magnetization, which involves the characteristics of superconductivity, such as the Berry curvature arising from unconventional pairing and an orbital magnetic moment induced by the charge dipole of moving quasiparticles.