Do you want to publish a course? Click here

Radiative transfer models of mid-infrared H2O lines in the Planet-forming Region of Circumstellar Disks

94   0   0.0 ( 0 )
 Added by Rowin Meijerink
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The study of warm molecular gas in the inner regions of protoplanetary disks is of key importance for the study of planet formation and especially for the transport of H2O and organic molecules to the surfaces of rocky planets/satellites. Recent Spitzer observations have shown that the mid-infrared spectra of protoplanetary disks are covered in emission lines due to water and other molecules. Here, we present a non-LTE 2D radiative transfer model of water lines in the 10-36 mum range that can be used to constrain the abundance structure of water vapor, given an observed spectrum, and show that an assumption of local thermodynamic equilibrium (LTE) does not accurately estimate the physical conditions of the water vapor emission zones. By applying the model to published Spitzer spectra we find that: 1) most water lines are subthermally excited, 2) the gas-to-dust ratio must be one to two orders of magnitude higher than the canonical interstellar medium ratio of 100-200, and 3) the gas temperature must be higher than the dust temperature, and 4) the water vapor abundance in the disk surface must be truncated beyond ~ 1 AU. A low efficiency of water formation below ~ 300 K may naturally result in a lower water abundance beyond a certain radius. However, we find that chemistry, may not be sufficient to produce an abundance drop of many orders of magnitude and speculate that the depletion may also be caused by vertical turbulent diffusion of water vapor from the superheated surface to regions below the snow line, where the water can freeze out and be transported to the midplane as part of the general dust settling. Such a vertical cold finger effect is likely to be efficient due to the lack of a replenishment mechanism of large, water-ice coated dust grains to the disk surface.



rate research

Read More

We present detections of numerous 10-20 micron H2O emission lines from two protoplanetary disks around the T Tauri stars AS 205A and DR Tau, obtained using the InfraRed Spectrograph on the Spitzer Space Telescope. Follow-up 3-5 micron Keck-NIRSPEC data confirm the presence of abundant water and spectrally resolve the lines. We also detect the P4.5 (2.934 micron) and P9.5 (3.179 micron) doublets of OH and 12CO/13CO v=1-0 emission in both sources. Line shapes and LTE models suggest that the emission from all three molecules originates between ~0.5 and 5 AU, and so will provide a new window for understanding the chemical environment during terrestrial planet formation. LTE models also imply significant columns of H2O and OH in the inner disk atmospheres, suggesting physical transport of volatile ices either vertically or radially; while the significant radial extent of the emission stresses the importance of a more complete understanding of non-thermal excitation processes.
56 - I. Kamp 2019
VLT instruments and ALMA have revolutionized in the past five years our view and understanding of how disks turn into planetary systems. They provide exquisite insights into non-axisymmetric structures likely closely related to ongoing planet formation processes. The following cannot be a complete review of the physical and chemical properties of disks; instead I focus on a few selected aspects. I will review our current understanding of the physical properties (e.g. solid and gas mass content, snow and ice lines) and chemical composition of planet forming disks at ages of 1-few Myr, especially in the context of the planetary systems that are forming inside them. I will highlight recent advances achieved by means of consistent multi-wavelength studies of gas AND dust in protoplanetary disks.
Recent mid-infrared observations of young stellar objects have found significant variations possibly indicative of changes in the structure of the circumstellar disk. Previous models of this variability have been restricted to axisymmetric perturbations in the disk. We consider simple models of a non-axisymmetric variation in the inner disk, such as a warp or a spiral wave. We find that the precession of these non-axisymmetric structures produce negligible flux variations but a change in the height of these structures can lead to significant changes in the mid-infrared flux. Applying these models to observations of the young stellar object LRLL 31 suggests that the observed variability could be explained by a warped inner disk with variable scale height. This suggests that some of the variability observed in young stellar objects could be explained by non-axisymmetric disturbances in the inner disk and this variability would be easily observable in future studies.
We aim to constrain the temperature and velocity structures, and H2O abundances in the winds of a sample of M-type AGB stars. We further aim to determine the effect of H2O line cooling on the energy balance in the inner circumstellar envelope. We use two radiative-transfer codes to model molecular emission lines of CO and H2O towards four M-type AGB stars. We focus on spectrally resolved observations of CO and H2O from HIFI. The observations are complemented by ground-based CO observations, and spectrally unresolved CO and H2O observations with PAC. The observed line profiles constrain the velocity structure throughout the circumstellar envelopes (CSEs), while the CO intensities constrain the temperature structure in the CSEs. The H2O observations constrain the o-H2O and p-H2O abundances relative to H2. Finally, the radiative-transfer modelling allows to solve the energy balance in the CSE, in principle including also H2O line cooling. The fits to the line profiles only set moderate constraints on the velocity profile, indicating shallower acceleration profiles in the winds of M-type AGB stars than predicted by dynamical models, while the CO observations effectively constrain the temperature structure. Including H2O line cooling in the energy balance was only possible for the low-mass-loss-rate objects in the sample, and required an ad hoc adjustment of the dust velocity profile in order to counteract extreme cooling in the inner CSE. H2O line cooling was therefore excluded from the models. The constraints set on the temperature profile by the CO lines nevertheless allowed us to derive H2O abundances. The derived H2O abundances confirm previous estimates and are consistent with chemical models. However, the uncertainties in the derived abundances are relatively large, in particular for p-H2O, and consequently the derived o/p-H2O ratios are not well constrained.
It is still debated whether star formation process depends on environment. In particular it is yet unclear whether star formation in the outer Galaxy, where the environmental conditions are, theoretically, less conducive, occurs in the same way as in the inner Galaxy. We investigate the population of NGC1893, a young cluster ~3-4 Myr in the outer part of the Galaxy (galactic radius >11 Kpc), to explore the effects of environmental conditions on star forming regions. We present infrared observations acquired using the IRAC camera onboard the Spitzer Space Telescope and analyze the color-color diagrams to establish the membership of stars with excesses. We also merge this information with that obtained from Chandra ACIS-I observations, to identify the Class III population. We find that the cluster is very rich, with 242 PMS Classical T-Tauri stars and 7 Class 0/I stars. We identify 110 Class III candidate cluster members in the ACIS-I field of view. We estimate a disk fraction for NGC1893 of about 67%, similar to fractions calculated for nearby star forming regions of the same age. Although environmental conditions are unfavorable, star formation can clearly be very successful in the outer Galaxy, allowing creation of a very rich cluster like NGC1893.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا