No Arabic abstract
The simplicial framework of Engle-Pereira-Rovelli-Livine spin-foam models is generalized to match the diffeomorphism invariant framework of loop quantum gravity. The simplicial spin-foams are generalized to arbitrary linear 2-cell spin-foams. The resulting framework admits all the spin-network states of loop quantum gravity, not only those defined by triangulations (or cubulations). In particular the notion of embedded spin-foam we use allows to consider knotting or linking spin-foam histories. Also the main tools as the vertex structure and the vertex amplitude are naturally generalized to arbitrary valency case. The correspondence between all the SU(2) intertwiners and the SU(2)$times$SU(2) EPRL intertwiners is proved to be 1-1 in the case of the Barbero-Immirzi parameter $|gamma|ge 1$, unless the co-domain of the EPRL map is trivial and the domain is non-trivial.
We explicitly construct and characterize all possible independent loop states in 3+1 dimensional loop quantum gravity by regulating it on a 3-d regular lattice in the Hamiltonian formalism. These loop states, characterized by the (dual) angular momentum quantum numbers, describe SU(2) rigid rotators on the links of the lattice. The loop states are constructed using the Schwinger bosons which are harmonic oscillators in the fundamental (spin half) representation of SU(2). Using generalized Wigner Eckart theorem, we compute the matrix elements of the volume operator in the loop basis. Some simple loop eigenstates of the volume operator are explicitly constructed.
In a recent paper, we introduced a new discretization scheme for gravity in 2+1 dimensions. Starting from the continuum theory, this new scheme allowed us to rigorously obtain the discrete phase space of loop gravity, coupled to particle-like edge mode degrees of freedom. In this work, we expand on that result by considering the most general choice of integration during the discretization process. We obtain a family of polarizations of the discrete phase space. In particular, one member of this family corresponds to the usual loop gravity phase space, while another corresponds to a new polarization, dual to the usual one in several ways. We study its properties, including the relevant constraints and the symmetries they generate. Furthermore, we motivate a relation between the dual polarization and teleparallel gravity.
We find all the spin-foams contributing in the first order of the vertex expansion to the transition amplitude of the Bianchi-Rovelli-Vidotto Dipole Cosmology model. Our algorithm is general and provides spin-foams of arbitrarily given, fixed: boundary and, respectively, a number of internal vertices. We use the recently introduced Operator Spin-Network Diagrams framework.
The canonical ``loop formulation of quantum gravity is a mathematically well defined, background independent, non perturbative standard quantization of Einsteins theory of General Relativity. Some among the most meaningful results of the theory are: 1) the complete calculation of the spectrum of geometric quantities like the area and the volume and the consequent physical predictions about the structure of the space-time at the Plank scale; 2) a microscopical derivation of the Bekenstein-Hawking black-hole entropy formula. Unfortunately, despite recent results, the dynamical aspect of the theory (imposition of the Wheller-De Witt constraint) remains elusive. After a short description of the basic ideas and the main results of loop quantum gravity we show in which sence the exponential of the super Hamiltonian constraint leads to the concept of spin foam and to a four dimensional formulation of the theory. Moreover, we show that some topological field theories as the BF theory in 3 and 4 dimension admits a spin foam formulation. We argue that the spin-foams/spin-networks formalism it is the natural framework to discuss loop quantum gravity and topological field theory.
The one-loop partition function of the $f(R,R_{mu u}R^{mu u})$ gravity theory is obtained around AdS$_4$ background. After suitable choice of the gauge condition and computation of the ghost determinant, we obtain the one-loop partition function of the theory. The traced heat kernel over the thermal quotient of AdS$_4$ space is also computed and the thermal partition function is obtained for this theory. We have then consider quantum corrections to the thermodynamical quantities in some special cases.