No Arabic abstract
We report on the micro-photoluminescence spectroscopy of InAs/GaAs quantum dots (QD) doped by a single Mn atom in a magnetic field either longitudinal or perpendicular to the optical axis. In both cases the spectral features of positive trion (X+) are found to split into strongly circularly polarized components, an effect very surprising in a perpendicular magnetic field. The field-induced splitting is ascribed to the transverse Zeeman splitting of the neutral acceptor complex A0 issued by the Mn impurity, whereas the circular optical selection rules result from the p-d exchange which acts as a very strong longitudinal magnetic field inhibiting the spin mixing by the transverse field of the QD heavy-hole ground state. A theoretical model of the spin interactions which includes (i) the local strain anisotropy experienced by the acceptor level and (ii) the anisotropic exchange due to the out-of-center Mn position provides a very good agreement with our observations.
The optical spectroscopy of a single InAs quantum dot doped with a single Mn atom is studied using a model Hamiltonian that includes the exchange interactions between the spins of the quantum dot electron-hole pair, the Mn atom and the acceptor hole. Our model permits to link the photoluminescence spectra to the Mn spin states after photon emission. We focus on the relation between the charge state of the Mn, $A^0$ or $A^-$, and the different spectra which result through either band-to-band or band-to-acceptor transitions. We consider both neutral and negatively charged dots. Our model is able to account for recent experimental results on single Mn doped InAs PL spectra and can be used to account for future experiments in GaAs quantum dots. Similarities and differences with the case of single Mn doped CdTe quantum dots are discussed.
We investigate the electronic structure of the InAs/InP quantum dots using an atomistic pseudopotential method and compare them to those of the InAs/GaAs QDs. We show that even though the InAs/InP and InAs/GaAs dots have the same dot material, their electronic structure differ significantly in certain aspects, especially for holes: (i) The hole levels have a much larger energy spacing in the InAs/InP dots than in the InAs/GaAs dots of corresponding size. (ii) Furthermore, in contrast with the InAs/GaAs dots, where the sizeable hole $p$, $d$ intra-shell level splitting smashes the energy level shell structure, the InAs/InP QDs have a well defined energy level shell structure with small $p$, $d$ level splitting, for holes. (iii) The fundamental exciton energies of the InAs/InP dots are calculated to be around 0.8 eV ($sim$ 1.55 $mu$m), about 200 meV lower than those of typical InAs/GaAs QDs, mainly due to the smaller lattice mismatch in the InAs/InP dots. (iii) The widths of the exciton $P$ shell and $D$ shell are much narrower in the InAs/InP dots than in the InAs/GaAs dots. (iv) The InAs/GaAs and InAs/InP dots have a reversed light polarization anisotropy along the [100] and [1$bar{1}$0] directions.
Excitonic polaron is directly demonstrated for the first time in InAs/GaAs quantum dots with photoluminescence method. A new peak ($s$) below the ground state of exciton ($s$) comes out as the temperature varies from 4.2 K to 285 K, and a huge anticrossing energy of 31 meV between $s$ and $s$ is observed at 225 K, which can only be explained by the formation of excitonic polaron. The results also provide a strong evidence for the invalidity of Huang-Rhys formulism in dealing with carrier-longitudinal optical phonon interaction in quantum dot. Instead, we propose a simple two-band model, and it fits the experimental data quite well. The reason for the finding of the anticrossing is also discussed.
The spin polarization of electrons trapped in InAs self-assembled quantum dot ensembles is investigated. A statistical approach for the population of the spin levels allows one to infer the spin polarization from the measure values of the addition energies. From the magneto-capacitance spectroscopy data, the authors found a fully polarized ensemble of electronic spins above 10 T when $mathbf{B}parallel[001]$ and at 2.8 K. Finally, by including the g-tensor anisotropy the angular dependence of spin polarization with the magnetic field $mathbf{B}$ orientation and strength could be determined.
Using a single-particle atomistic pseudopotential method followed by a many-particle configuration interaction method, we investigate the geometry, electronic structure and optical transitions of a self-assembled InAs/GaAs quantum ring (QR), changing its shape continously from a lens-shaped quantum dot (QD) to a nearly one dimensional ring. We find that the biaxial strain in the ring is strongly asymmetric in the plane perpendicular to the QR growth direction, leading to giant optical anisotropy.