Do you want to publish a course? Click here

Extremely high velocity gas from the massive YSOs in IRAS 17233-3606

449   0   0.0 ( 0 )
 Added by Silvia Leurini
 Publication date 2009
  fields Physics
and research's language is English
 Authors S. Leurini




Ask ChatGPT about the research

Molecular outflows from high-mass young stellar objects provide an excellent way to study the star formation process, and investigate if they are scaled-u



rate research

Read More

Direct observations of accretion disks around high-mass young stellar objects would help to discriminate between different models of formation of massive stars. However, given the complexity of massive star forming regions, such studies are still limited in number. Additionally, there is still no general consensus on the molecular tracers to be used for such investigations. Because of its close distance and high luminosity, IRAS 17233-3606 is a potential good laboratory to search for traces of rotation in the inner gas around the protostar(s). Therefore, we selected the source for a detailed analysis of its molecular emission at 230 GHz with the SMA. We systematically investigated the velocity fields of transitions in the SMA spectra which are not affected by overlap with other transitions, and searched for coherent velocity gradients to compare them to the distribution of outflows in the region. Beside CO emission we also used high-angular H2 images to trace the outflow motions driven by the IRAS 17233-3606 cluster. We find linear velocity gradients in many transitions of the same molecular species and in several molecules. We report the first detection of HNCO in molecular outflows from massive YSOs. We discuss the CH3CN velocity gradient taking into account various scenarios: rotation, presence of multiple unresolved sources with different velocities, and outflow(s). Although other interpretations cannot be ruled out, we propose that the CH3CN emission might be affected by the outflows of the region. Higher angular observations are needed to discriminate between the different scenarios. The present observations, with the possible association of CH3CN with outflows in a few thousands AU around the YSOs cluster, (i) question the choice of the tracer to probe rotating structures, and (ii) show the importance of the use of H2 images for detailed studies of kinematics.
Studies of molecular outflows in high-mass young stellar objects reveal important information about the formation process of massive stars. We therefore selected the close-by IRAS 17233-3606 massive star-forming region to perform SiO observations with the SMA interferometer in the (5-4) line and with the APEX single-dish telescope in the (5-4) and (8-7) transitions. In this paper, we present a study of one of the outflows in the region, OF1, which shows several properties similar to jets driven by low-mass protostars, such as HH211 and HH212. It is compact and collimated, and associated with extremely high velocity CO emission, and SiO emission at high velocities. We used a state-of-the-art shock model to constrain the pre-shock density and shock velocity of OF1. The model also allowed us to self-consistently estimate the mass of the OF1 outflow. The shock parameters inferred by the SiO modelling are comparable with those found for low-mass protostars, only with higher pre-shock density values, yielding an outflow mass in agreement with those obtained for molecular outflows driven by early B-type young stellar objects. Our study shows that it is possible to model the SiO emission in high-mass star-forming regions in the same way as for shocks from low-mass young stellar objects.
116 - Luis A. Zapata 2008
We have analyzed sensitive high spatial resolution archival radio continuum data at 1.3, 2.0, 3.6 and 6.0 cm as well as the H2O maser molecular line data obtained using the Very Large Array (VLA) in its hybrid AB configuration toward the high-mass star-forming region IRAS 17233-3606 (G351.78-0.54). We find nine compact radio sources associated with this region, six of them are new radio detections. We discuss the characteristics of these sources based mostly on their spectral indices and find that most of them appear to be optically thin or thick ultra- and hyper-compact HII regions ionized by B ZAMS stars. Furthermore, in a few cases the radio emission may arise from optically thick dusty disks and/or cores, however more observations at different wavelengths are necessity to firmly confirm their true nature. In addition, we compared our centimeter maps with the mid-infrared images fromthe Spitzer Space Observatory GLIMPSE survey revealing a cluster of young protostars in the region together with multiple collimated outflows some of whom might be related with the compact centimeter objects.
Context: Jets and outflows are key ingredients in the formation of stars across the mass spectrum. In clustered regions, understanding powering sources and outflow components poses a significant problem. Aims: To understand the dynamics in the outflow(s) from a cluster in the process of forming massive stars. Methods: We use new VLA observations of the molecular gas (SiO, CS, OCS and molec) in the massive star forming region IRAS 17233-3606 which contains a number of HII regions. We compare these observations to previously published molecular data for this source in order to get a holistic view of the outflow dynamics. Results:We find that the dynamics of the various species can be explained by a single large scale ($sim 0.15$ pc) outflow when compared to the sizes of the HII regions, with the different morphologies of the blue and red outflow components explained with respect to the morphology of the surrounding envelope. We further find that the direction of the velocity gradients seen in OCS and molec are suggestive of a combination of rotation and outflow motions in the warm gas surrounding the HII regions near the base of the large scale outflow. Conclusions: Our results show that the massive protostars forming within this region appear to be contributing to a single outflow on large scales. This single large scale outflow is traced by a number of different species as the outflow interacts with its surroundings. On the small scales, there appear to be multiple mechanisms contributing to the dynamics which could be a combination of either a small scale outflow or rotation with the dynamics of the large scale outflow.
69 - W. P. Varricatt 2018
Massive stars are rarely seen to form in isolation. It has been proposed that association with companions or clusters in the formative stages is vital to their mass accumulation. In this paper we study IRAS~18144-1723, a massive young stellar object (YSO) which had been perceived in early studies as a single source. In the CO(3-2) line, we detect an outflow aligned well with the outflow seen in H$_2$ in this region. We show that there are at least two YSOs here, and that the outflow is most likely to be from a deeply embedded source detected in our infrared imaging. Using multi-wavelength observations, we study the outflow and the embedded source and derive their properties. We conclude that IRAS~18144 hosts an isolated cloud, in which at least two massive YSOs are being born. From our sub-mm observations, we derive the mass of the cloud and the core hosting the YSOs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا