No Arabic abstract
We have calculated surface energies and surface magnetic order of various low-indexed surfaces of monoatomic Fe, Co, and Pt, and binary, ordered FePt, CoPt, and MnPt using density functional theory. Our results for the binary systems indicate that elemental, Pt-covered surfaces are preferred over Fe- and Co-covered and mixed surfaces of the same orientation. The lowest energy orientation for mixed surfaces is the highly coordinated (111) surface. We find Pt-covered (111) surfaces, which can be realized in the L11 structure only, to be lower in energy by about 400 meV/atom compared to the mixed L10 (111) surface. We conclude that this low surface energy stabilizes the L11 structure in small nanoparticles, which is suppressed in bulk alloys, but has been recently synthesized as thin film for CoPt. From the interplay of surface and bulk energies, equilibrium shapes of single-crystalline ordered nanoparticles and crossover sizes between the different orderings can be estimated.
We investigate structural, magnetic, and electronic properties of SrFeAsF as a new parent for superconductors using state-of-the-art density-functional theory method. Calculated results show that striped antiferromagnetic order is the magnetic ground state in the Fe layer and interlayer magnetic interaction is tiny. Calculated As and Sr positions are in agreement with experiment. There are only two uniaxially-dispersed bands near the Fermi level. The valent charge is mainly in the Fe and F layers, and the magnetic moment is confined to the Fe atoms. Inter-Fe-spin couplings is due to superexchange through As atoms. These are useful to understanding the SrFeAsF and should have helpful implications to doped samples.
Ni$_{80}$Fe$_{20}$ (Py) and Py-Cu exhibit intriguing ultrafast demagnetization behavior, where the Ni magnetic moment shows a delayed response relative to the Fe [S. Mathias et al., PNAS {bf 109}, 4792 (2012)]. To unravel the mechanism responsible for this behavior, we have studied Py-Cu alloys for a wide range of Cu concentrations using X-ray magnetic circular dichroism (XMCD). The magnetic moments of Fe and Ni are found to respond very differently to Cu alloying: Fe becomes a strong ferromagnet in Py, with the magnetic moment largely unaffected by Cu alloying. In contrast, the Ni magnetic moment decreases continuously with increasing Cu concentration. Our results are corroborated by ab-initio calculations of the electronic structure, which we discuss in the framework of virtual bound states (VBSs). For high Cu concentrations, Ni exhibits VBSs below the Fermi level, which are likely responsible for an increased orbital/spin magnetic ratio at high Cu concentrations. Fe exhibits VBSs in the minority band, approximately 1 eV above the Fermi level in pure Py, that move closer to the Fermi level upon Cu alloying. A strong interaction between the VBSs and excited electrons above the Fermi level enhances the formation of localized magnons at Fe sites, which explains the different behavior between Fe and Ni during ultrafast demagnetization.
A density-functional-theory based approach to efficiently compute numerically exact vibrational free energies - including anharmonicity - for chemically complex multicomponent alloys is developed. It is based on a combination of thermodynamic integration and a machine-learning potential. We demonstrate the performance of the approach by computing the anharmonic free energy of the prototypical five-component VNbMoTaW refractory high entropy alloy.
Surface adsorption, which is often coupled with surface dissolution, is generally unpredictable on alloys due to the complicated alloying and dissolution effects. Herein, we introduce the electronic gradient and cohesive properties of surface sites to characterize the effects of alloying and dissolution. This enables us to build a predictive model for the quantitative determination of the adsorption energy in dissolution, which holds well for transition metals, near-surface alloys, binary alloys, and high-entropy alloys. Furthermore, this model uncovers a synergistic mechanism between the d-band upper-edge ratio, d-band width and s-band depth in determining the alloying and dissolution effects on adsorption. Our study not only provides fundamental mechanistic insights into surface adsorption on alloys but also offers a long-sought tool for the design of advanced alloy catalysts.
A series of full-Heusler alloys, $rm Fe_2V_{1-x}W_xAl$, $0 leq x leq 0.2$, was prepared, characterized and relevant physical properties to account for the thermoelectric performance were studied in a wide temperature range. Additionally, off-stoichiometric samples with similar compositions have been included, and a 10~% improvement of the thermoelectric figure of merit was obtained. The V/W substitution causes i) a change of the main carrier type, from holes to electrons as evidenced from Seebeck and Hall measurements and ii) a substantial reduction of the lattice thermal conductivity due to a creation of lattice disorder by means of a distinct different mass and metallic radius upon the V/W substitution. Moreover $ZT$ values above 0.2 have been obtained. A microscopic understanding of the experimental data observed is revealed from ab-initio calculations of the electronic and phononic structure.