Do you want to publish a course? Click here

C2D Spitzer-IRS spectra of disks around T Tauri stars. IV. Crystalline silicates

126   0   0.0 ( 0 )
 Added by Johan Olofsson
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dust grains in the planet forming regions around young stars are expected to be heavily processed due to coagulation, fragmentation and crystallization. This paper focuses on the crystalline silicate dust grains in protoplanetary disks. As part of the Cores to Disks Legacy Program, we obtained more than a hundred Spitzer/IRS spectra of TTauri stars. More than 3/4 of our objects show at least one crystalline silicate emission feature that can be essentially attributed to Mg-rich silicates. Observational properties of the crystalline features seen at lambda > 20 mu correlate with each other, while they are largely uncorrelated with the properties of the amorphous silicate 10 mu feature. This supports the idea that the IRS spectra essentially probe two independent disk regions: a warm zone (< 1 AU) emitting at lambda ~ 10 mu and a much colder region emitting at lambda > 20 mu (< 10 AU). We identify a crystallinity paradox, as the long-wavelength crystalline silicate features are 3.5 times more frequently detected (~55 % vs. ~15%) than the crystalline features arising from much warmer disk regions. This suggests that the disk has an inhomogeneous dust composition within ~10 AU. The abundant crystalline silicates found far from their presumed formation regions suggests efficient outward radial transport mechanisms in the disks. The analysis of the shape and strength of both the amorphous 10 mu feature and the crystalline feature around 23 mu provides evidence for the prevalence of micron-sized grains in upper layers of disks. Their presence in disk atmospheres suggests efficient vertical diffusion, likely accompanied by grain-grain fragmentation to balance the efficient growth expected. Finally, the depletion of submicron-sized grains points toward removal mechanisms such as stellar winds or radiation pressure.



rate research

Read More

Infrared ~5--35 um spectra for 40 solar-mass T Tauri stars and 7 intermediate-mass Herbig Ae stars with circumstellar disks were obtained using the Spitzer Space Telescope as part of the c2d IRS survey. This work complements prior spectroscopic studies of silicate infrared emission from disks, which were focused on intermediate-mass stars, with observations of solar-mass stars limited primarily to the 10 um region. The observed 10 and 20 um silicate feature strengths/shapes are consistent with source-to-source variations in grain size. A large fraction of the features are weak and flat, consistent with um-sized grains indicating fast grain growth (from 0.1--1.0 um in radius). In addition, approximately half of the T Tauri star spectra show crystalline silicate features near 28 and 33 um indicating significant processing when compared to interstellar grains. A few sources show large 10-to-20 um ratios and require even larger grains emitting at 20 um than at 10 um. This size difference may arise from the difference in the depth into the disk probed by the two silicate emission bands in disks where dust settling has occurred. The 10 um feature strength vs. shape trend is not correlated with age or Halpha equivalent width, suggesting that some amount of turbulent mixing and regeneration of small grains is occurring. The strength vs. shape trend is related to spectral type, however, with M stars showing significantly flatter 10 um features (larger grain sizes) than A/B stars. The connection between spectral type and grain size is interpreted in terms of the variation in the silicate emission radius as a function of stellar luminosity, but could also be indicative of other spectral-type dependent factors (e.g, X-rays, UV radiation, stellar/disk winds, etc.).
Aims: We search for PAH features towards T Tauri stars and compare them with surveys of Herbig Ae/Be stars. The presence and strength of the PAH features are interpreted with disk radiative transfer models exploring the PAH feature dependence on the incident UV radiation, PAH abundance and disk parameters. Methods: Spitzer Space Telescope 5-35 micron spectra of 54 pre-main sequence stars with disks were obtained, consisting of 38 T Tauri, 7 Herbig Ae/Be and 9 stars with unknown spectral type. Results: Compact PAH emission is detected towards at least 8 sources of which 5 are Herbig Ae/Be stars. The 11.2 micron PAH feature is detected in all of these sources, as is the 6.2 micron PAH feature where short wavelength data are available. However, the 7.7 and 8.6 micron features appear strongly in only 1 of these 4 sources. PAH emission is observed towards at least 3 T Tauri stars (8% detection rate). The lowest mass source with PAHs in our sample is T Cha (G8). All 4 sources in our sample with evidence for dust holes in their inner disk show PAH emission, increasing the feature/continuum ratio. Typical 11.2 micron line intensities are an order of magnitude lower than those observed for the more massive Herbig Ae/Be stars. Measured line fluxes indicate PAH abundances that are factors of 10-100 lower than standard interstellar values. Conversely, PAH features from disks exposed to stars with Teff<=4200K without enhanced UV are predicted to be below the current detection limit, even for high PAH abundances. Disk modeling shows that the 6.2 and 11.2 micron features are the best PAH tracers for T Tauri stars, whereas the 7.7 and 8.6 micron bands have low feature over continuum ratios due to the strongly rising silicate emission.
We present 3.6 to 70 {mu}m Spitzer photometry of 154 weak-line T Tauri stars (WTTS) in the Chamaeleon, Lupus, Ophiuchus and Taurus star formation regions, all of which are within 200 pc of the Sun. For a comparative study, we also include 33 classical T Tauri stars (CTTS) which are located in the same star forming regions. Spitzer sensitivities allow us to robustly detect the photosphere in the IRAC bands (3.6 to 8 {mu}m) and the 24 {mu}m MIPS band. In the 70 {mu}m MIPS band, we are able to detect dust emission brighter than roughly 40 times the photosphere. These observations represent the most sensitive WTTS survey in the mid to far infrared to date, and reveal the frequency of outer disks (r = 3-50 AU) around WTTS. The 70 {mu}m photometry for half the c2d WTTS sample (the on-cloud objects), which were not included in the earlier papers in this series, Padgett et al. (2006) and Cieza et al. (2007), are presented here for the first time. We find a disk frequency of 19% for on-cloud WTTS, but just 5% for off- cloud WTTS, similar to the value reported in the earlier works. WTTS exhibit spectral energy distributions (SEDs) that are quite diverse, spanning the range from optically thick to optically thin disks. Most disks become more tenuous than Ldisk/L* = 2 x 10^-3 in 2 Myr, and more tenuous than Ldisk/L* = 5 x 10^-4 in 4 Myr.
We present the Spitzer Space Telescope Infrared Spectrograph spectrum of the Orion A protostar HOPS-68. The mid-infrared spectrum reveals crystalline substructure at 11.1, 16.1, 18.8, 23.6, 27.9, and 33.6 microns superimposed on the broad 9.7 and 18 micron amorphous silicate features; the substructure is well matched by the presence of the olivine end-member forsterite. Crystalline silicates are often observed as infrared emission features around the circumstellar disks of Herbig Ae/Be stars and T Tauri stars. However, this is the first unambiguous detection of crystalline silicate absorption in a cold, infalling, protostellar envelope. We estimate the crystalline mass fraction along the line-of-sight by first assuming that the crystalline silicates are located in a cold absorbing screen and secondly by utilizing radiative transfer models. The resulting crystalline mass fractions of 0.14 and 0.17, respectively, are significantly greater than the upper limit found in the interstellar medium (< 0.02-0.05). We propose that the amorphous silicates were annealed within the hot inner disk and/or envelope regions and subsequently transported outward into the envelope by entrainment in a protostellar outflow
We have observed 152 nearby solar-type stars with the Infrared Spectrometer (IRS) on the Spitzer Space Telescope. Including stars that met our criteria but were observed in other surveys, we get an overall success rate for finding excesses in the long wavelength IRS band (30-34 micron) of 11.8% +/- 2.4%. The success rate for excesses in the short wavelength band (8.5-12 micron) is ~1% including sources from other surveys. For stars with no excess at 8.5-12 microns, the IRS data set 3 sigma limits of around 1,000 times the level of zodiacal emission present in our solar system, while at 30-34 microns set limits of around 100 times the level of our solar system. Two stars (HD 40136 and HD 10647) show weak evidence for spectral features; the excess emission in the other systems is featureless. If the emitting material consists of large (10 micron) grains as implied by the lack of spectral features, we find that these grains are typically located at or beyond the snow line, ~1-35 AU from the host stars, with an average distance of 14 +/- 6 AU; however smaller grains could be located at significantly greater distances from the host stars. These distances correspond to dust temperatures in the range ~50-450 K. Several of the disks are well modeled by a single dust temperature, possibly indicative of a ring-like structure. However, a single dust temperature does not match the data for other disks in the sample, implying a distribution of temperatures within these disks. For most stars with excesses, we detect an excess at both IRS and MIPS wavelengths. Only three stars in this sample show a MIPS 70 micron excess with no IRS excess, implying that very cold dust is rare around solar-type stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا