Entangled games do not require much entanglement (withdrawn)


Abstract in English

We prove an explicit upper bound on the amount of entanglement required by any strategy in a two-player cooperative game with classical questions and quantum answers. Specifically, we show that every strategy for a game with n-bit questions and n-qubit answers can be implemented exactly by players who share an entangled state of no more than 5n qubits--a bound which is optimal to within a factor of 5/2. Previously, no upper bound at all was known on the amount of entanglement required even to approximate such a strategy. It follows that the problem of computing the value of these games is in NP, whereas previously this problem was not known to be computable.

Download