Do you want to publish a course? Click here

Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale

112   0   0.0 ( 0 )
 Added by James Rabeau
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fluorescent defects in non-cytotoxic diamond nanoparticles are candidates for qubits in quantum computing, optical labels in biomedical imaging and sensors in magnetometry. For each application these defects need to be optically and thermodynamically stable, and included in individual particles at suitable concentrations (singly or in large numbers). In this letter, we combine simulations, theory and experiment to provide the first comprehensive and generic prediction of the size, temperature and nitrogen-concentration dependent stability of optically active NV defects in nanodiamonds.



rate research

Read More

In recent years there has been a growing interest in sp-carbon chains as possible novel nanostructures. An example of sp-carbon chains are the so-called polyynes, characterized by the alternation of single and triple bonds that can be synthesized by pulsed laser ablation in liquid (PLAL) of a graphite target. In this work, by exploiting different solvents in the PLAL process, e.g. water, acetonitrile, methanol, ethanol, and isopropanol, we systematically investigate the solvent role in polyyne formation and stability. The presence of methyland cyano-groups in the solutions influences the termination of polyynes, allowing to detect, in addition to hydrogen-capped polyynes up to HC22H, methyl-capped polyynes up to 18 carbon atoms (i.e. HCnCH3) and cyanopolyynes up to HC12CN. The assignment of each species was done by UV-Vis spectroscopy and supported by density functional theory simulations of vibronic spectra. In addition, surface-enhanced Raman spectroscopy allowed to observe differences, due to different terminations (hydrogen, methyl-and cyano group), in the shape and positions of the characteristic Raman bands of the size-selected polyynes. The evolution in time of each polyyne has been investigated evaluating the chromatographic peak area, and the effect of size, terminations and solvents on polyynes stability has been individuated.
100 - L.-H Liang , Baowen Li 2006
We study the size dependence of thermal conductivity in nanoscale semiconducting systems. An analytical formula including the surface scattering and the size confinement effects of phonon transport is derived. The theoretical formula gives good agreements with the existing experimental data for Si and GaAs nanowires and thin films.
In this manuscript, we outline a reliable procedure to manufacture photonic nanostructures from single-crystal diamond (SCD). Photonic nanostructures, in our case SCD nanopillars on thin (< 1$mu$m) platforms, are highly relevant for nanoscale sensing. The presented top-down procedure includes electron beam lithography (EBL) as well as reactive ion etching (RIE). Our method introduces a novel type of inter-layer, namely silicon, that significantly enhances the adhesion of hydrogen silsesquioxane (HSQ) electron beam resist to SCD and avoids sample charging during EBL. In contrast to previously used adhesion layers, our silicon layer can be removed using a highly-selective RIE step which is not damaging HSQ mask structures. We thus refine published nanofabrication processes to ease a higher process reliability especially in the light of the advancing commercialization of SCD sensor devices.
Segregation at surfaces of metal-covalent binary liquids is often non-classical and in extreme cases such as AuSi, the surface crystallizes above the melting point. In this study, we employ atomic-scale computational frameworks to study the surface crystallization of AuSi films and droplets as a function of composition, temperature and size. For temperatures in the range $T_s^ast=765-780$K above the melting point $(T_s^astapprox1.3,T_m)$, both thin film and droplet surfaces undergo a first order transition, from a 2D Au$_2$Si crystalline phase to a laterally disordered yet stratified layer. The thin film surfaces exhibit an effective surface tension that increases with temperature and decreases with Si concentration. On the other hand, for droplets in the size range $10-30$ nm, the bulk Laplace pressure alters the surface segregation as it occurs with respect to a strained bulk. Above $T_s^ast$ the size effect on the surface tension is small, while for $T<T_s^ast$ the surface layer is strained and composed of 2D crystallites separated by extended grain boundary scars that lead to large fluctuations in its energetics. As a specific application, all-atom simulations of AuSi droplets on Si(111) substrate subject to Si surface flux show that the supersaturation dependent surface tension destabilizes the contact line via formation of a precursor wetting film on the solid-vapor interface, and has ramifications for size selection during VLS-based routes for nanowire growth. Our study sheds light on the interplay between stability and energetics of surfaces in these unique class of binary alloys and offers pathways for exploiting their surface structure for varied applications such as catalytic nanocrystal growth, dealloying, and polymer crystallization.
Most multiferroic materials with coexisting ferroelectric and magnetic order exhibit cycloidal antiferromagnetism with wavelength of several nanometers. The prototypical example is bismuth ferrite (BiFeO$_3$ or BFO), a room-temperature multiferroic considered for a number of technological applications. While most applications require small sizes such as nanoparticles, little is known about the state of these materials when their sizes are comparable to the cycloid wavelength. This work describes a microscopic theory of cycloidal magnetism in nanoparticles based on Hamiltonian calculations. It is demonstrated that magnetic anisotropy close to the surface has a huge impact on the multiferroic ground state. For certain nanoparticle sizes the modulus of the ferromagnetic and ferroelectric moments are bistable, an effect that may be used in the design of ideal memory bits that can be switched electrically and read out magnetically.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا