Non-equilibrium dynamics of quantum systems: order parameter evolution, defect generation, and qubit transfer


Abstract in English

In this review, we study some aspects of the non-equilibrium dynamics of quantum systems. In particular, we consider the effect of varying a parameter in the Hamiltonian of a quantum system which takes it across a quantum critical point or line. We study both sudden and slow quenches in a variety of systems including one-dimensional ultracold atoms in an optical lattice, an infinite range ferromagnetic Ising model, and some exactly solvable spin models in one and two dimensions (such as the Kitaev model). We show that quenching leads to the formation of defects whose density has a power-law dependence on the quenching rate; the power depends on the dimensionalities of the system and of the critical surface and on some of the exponents associated with the critical point which is being crossed. We also study the effect of non-linear quenching; the power law of the defects then depends on the degree of non-linearity. Finally, we study some spin-1/2 models to discuss how a qubit can be transferred across a system.

Download