Do you want to publish a course? Click here

On The Problem of Vacuum energy in Brane Theories

257   0   0.0 ( 0 )
 Added by Ilya Gurwich
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We point out that modern brane theories suffer from a severe vacuum energy problem. To be specific, the Casimir energy associated with the matter fields confined to the brane, is stemming from the one and the same localization mechanism which forms the brane itself, and is thus generically unavoidable. Possible practical solutions are discussed, including in particular spontaneously broken supersymmetry, and quantum mechanically induced brane tension.



rate research

Read More

249 - Cedric Lorce , Peter Lowdon 2020
In this work we investigate the matrix elements of the energy-momentum tensor for massless on-shell states in four-dimensional unitary, local, and Poincare covariant quantum field theories. We demonstrate that these matrix elements can be parametrised in terms of covariant multipoles of the Lorentz generators, and that this gives rise to a form factor decomposition in which the helicity dependence of the states is factorised. Using this decomposition we go on to explore some of the consequences for conformal field theories, deriving the explicit analytic conditions imposed by conformal symmetry, and using examples to illustrate that they uniquely fix the form of the matrix elements. We also provide new insights into the constraints imposed by the existence of massless particles, showing in particular that massless free theories are necessarily conformal.
Based on the cosmic holographic conjecture of Fischler and Susskind, we point out that the average energy density of the universe is bound from above by its entropy limit. Since Friedmanns equation saturates this relation, the measured value of the cosmological energy density is completely natural in the framework of holographic thermodynamics: vacuum energy density fills the available quantum degrees of freedom allowed by the holographic bound. This is in strong contrast with traditional quantum field theories where, since no similar bound applies, the natural value of the vacuum energy is expected to be 123 orders of magnitude higher than the holographic value. Based on our simple calculation, holographic thermodynamics, and consequently any future holographic quantum (gravity) theory, resolves the vacuum energy puzzle.
In this paper we present two (a priori independent) derivations of the eikonal operator in string-brane scattering. The first one is obtained by summing surfaces with any number of boundaries, while in the second one the eikonal operator is derived from the three-string vertex in a suitable light-cone gauge. This second derivation shows that the bosonic oscillators present in the leading eikonal operator are to be identified with the string bosonic oscillators in a suitable light-cone gauge, while the first one shows that it exponentiates recovering unitarity. This paper is a review of results obtained in two previous publications of the same authors.
163 - Shoichi Ichinose 2012
We regard the Casimir energy of the universe as the main contribution to the cosmological constant. Using 5 dimensional models of the universe, the flat model and the warped one, we calculate Casimir energy. Introducing the new regularization, called {it sphere lattice regularization}, we solve the divergence problem. The regularization utilizes the closed-string configuration. We consider 4 different approaches: 1) restriction of the integral region (Randall-Schwartz), 2) method of 1) using the minimal area surfaces, 3) introducing the weight function, 4) {it generalized path-integral}. We claim the 5 dimensional field theories are quantized properly and all divergences are renormalized. At present, it is explicitly demonstrated in the numerical way, not in the analytical way. The renormalization-group function ($be$-function) is explicitly obtained. The renormalization-group flow of the cosmological constant is concretely obtained.
We analyze the general covariant energy-momentum tensor of the gravitational system in genreal five-dimensional cosmological brane-world models. Then through calculating this energy-momentum for the cosmological generalization of the Randall-Sundrum model, which includes the original RS model as the static limit, we are able to show that the weakness of the gravitation on the visible brane is a general feature of this model. This is the origin of the gauge hierarchy from a gravitational point of view. Our results are also consistent with the fact that a gravitational system has vanishing total energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا