No Arabic abstract
We present AGN from the Sloan Digital Sky Survey (SDSS) having double-peaked profiles of [OIII] 5007,4959 and other narrow emission-lines, motivated by the prospect of finding candidate binary AGN. These objects were identified by means of a visual examination of 21,592 quasars at z < 0.7 in SDSS Data Release 7 (DR7). Of the spectra with adequate signal-to-noise, 148 spectra exhibit a double-peaked [OIII] profile. Of these, 86 are Type 1 AGN and 62 are Type 2 AGN. Only two give the appearance of possibly being optically resolved double AGN in the SDSS images, but many show close companions or signs of recent interaction. Radio-detected quasars are three times more likely to exhibit a double-peaked [OIII] profile than quasars with no detected radio flux, suggesting a role for jet interactions in producing the double-peaked profiles. Of the 66 broad line (Type 1) AGN that are undetected in the FIRST survey, 0.9% show double peaked [OIII] profiles. We discuss statistical tests of the nature of the double-peaked objects. Further study is needed to determine which of them are binary AGN rather than disturbed narrow line regions, and how many additional binaries may remain undetected because of insufficient line-of-sight velocity splitting. Previous studies indicate that 0.1% of SDSS quasars are spatially resolved binaries, with typical spacings of ~10 to 100 kpc. If a substantial fraction of the double-peaked objects are indeed binaries, then our results imply that binaries occur more frequently at smaller separations (< 10 kpc). This suggests that simultaneous fueling of both black holes is more common as the binary orbit decays through these spacings.
Double-peaked Balmer lines have been observed in about 150 AGNs and were interpreted preferably as emission from relativistic accretion disks. In this paper, we report the discovery of extreme double-peaked lines in SDSS J0942+0900 and SDSS J1417+6141. The FWHM of the Halpha line ~40,600 km/s in the first object is almost twice as large as the broadest one previously known. By comparing the line profile with accretion disk models, we find that most of the line flux is emitted from a narrow annulus around 100Rg in SDSS J0942+0900, and from a disk of radii between 100 and 400Rg in SDSS J1417+6141. This is the first time that an accretion disk at radii below 100Rg can be directly probed through optical emission lines. A certain asymmetry in the disk is required for both objects. Another much weaker broad Halpha component (EW~20A, and FWHM 4000km/s) is also detected in both objects. Both objects show weak radio emission and strong high-ionization narrow lines.
We carry out a systematic search for extremely metal poor (XMP) galaxies in the spectroscopic sample of Sloan Digital Sky Survey (SDSS) data release 7 (DR7). The XMP candidates are found by classifying all the galaxies according to the form of their spectra in a region 80AA wide around Halpha. Due to the data size, the method requires an automatic classification algorithm. We use k-means. Our systematic search renders 32 galaxies having negligible [NII] lines, as expected in XMP galaxy spectra. Twenty one of them have been previously identified as XMP galaxies in the literature -- the remaining eleven are new. This was established after a thorough bibliographic search that yielded only some 130 galaxies known to have an oxygen metallicity ten times smaller than the Sun (explicitly, with 12+log(O/H) <= 7.65). XMP galaxies are rare; they represent 0.01% of the galaxies with emission lines in SDSS/DR7. Although the final metallicity estimate of all candidates remains pending, strong-line empirical calibrations indicate a metallicity about one-tenth solar, with the oxygen metallicity of the twenty one known targets being 12+log(O/H)= 7.61 +- 0.19. Since the SDSS catalog is limited in apparent magnitude, we have been able to estimate the volume number density of XMP galaxies in the local universe, which turns out to be (1.32 +- 0.23) x 10^-4 Mpc^-3. The XMP galaxies constitute 0.1% of the galaxies in the local volume, or some 0.2% considering only emission line galaxies. All but four of our candidates are blue compact dwarf galaxies (BCDs), and 24 of them have either cometary shape or are formed by chained knots.
Under the unified model for active galactic nuclei (AGNs), narrow-line (Type 2) AGNs are, in fact, broad-line (Type 1) AGNs but each with a heavily obscured accretion disk. We would therefore expect the optical continuum emission from Type 2 AGN to be composed mainly of stellar light and non-variable on the time-scales of months to years. In this work we probe the spectroscopic variability of galaxies and narrow-line AGNs using the multi-epoch data in the Sloan Digital Sky Survey (SDSS) Data Release 6. The sample contains 18,435 sources for which there exist pairs of spectroscopic observations (with a maximum separation in time of ~700 days) covering a wavelength range of 3900-8900 angstrom. To obtain a reliable repeatability measurement between each spectral pair, we consider a number of techniques for spectrophotometric calibration resulting in an improved spectrophotometric calibration of a factor of two. From these data we find no obvious continuum and emission-line variability in the narrow-line AGNs on average -- the spectroscopic variability of the continuum is 0.07+/-0.26 mag in the g band and, for the emission-line ratios log10([NII]/Halpha) and log10([OIII]/Hbeta), the variability is 0.02+/-0.03 dex and 0.06+/-0.08 dex, respectively. From the continuum variability measurement we set an upper limit on the ratio between the flux of varying spectral component, presumably related to AGN activities, and that of host galaxy to be ~30%. We provide the corresponding upper limits for other spectral classes, including those from the BPT diagram, eClass galaxy classification, stars and quasars.
An important question in extragalactic astronomy concerns the distribution of black hole accretion rates of active galactic nuclei (AGN). Based on observations at X-ray wavelengths, the observed Eddington ratio distribution appears as a power law, while optical studies have often yielded a lognormal distribution. There is increasing evidence that these observed discrepancies may be due to contamination by star formation and other selection effects. Using a sample of galaxies from the Sloan Digital Sky Survey Data Release 7, we test if an intrinsic Eddington ratio distribution that takes the form of a Schechter function is consistent with previous work that suggests that young galaxies in optical surveys have an observed lognormal Eddington ratio distribution. We simulate the optical emission line properties of a population of galaxies and AGN using a broad instantaneous luminosity distribution described by a Schechter function near the Eddington limit. This simulated AGN population is then compared to observed galaxies via the positions on an emission line excitation diagram and Eddington ratio distributions. We present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio counteracting the effects of dilution by star formation. We conclude that for optically selected AGN in young galaxies, the intrinsic Eddington ratio distribution is consistent with a possibly universal, broad power law with an exponential cutoff, as this distribution is observed in old optically selected galaxies and in X-rays.
Double-peaked [O III]5007, profiles in active galactic nuclei (AGNs) may provide evidence for the existence of dual AGNs, but a good diagnostic for selecting them is currently lacking. Starting from $sim$ 7000 active galaxies in SDSS DR7, we assemble a sample of 87 type 2 AGNs with double-peaked [O III]5007, profiles. The nuclear obscuration in the type 2 AGNs allows us to determine redshifts of host galaxies through stellar absorption lines. We typically find that one peak is redshifted and another is blueshifted relative to the host galaxy. We find a strong correlation between the ratios of the shifts and the double peak fluxes. The correlation can be naturally explained by the Keplerian relation predicted by models of co-rotating dual AGNs. The current sample statistically favors that most of the [O III] double-peaked sources are dual AGNs and disfavors other explanations, such as rotating disk and outflows. These dual AGNs have a separation distance at $sim 1$ kpc scale, showing an intermediate phase of merging systems. The appearance of dual AGNs is about $sim 10^{-2}$, impacting on the current observational deficit of binary supermassive black holes with a probability of $sim 10^{-4}$ (Boroson & Lauer).