No Arabic abstract
We describe the temporal evolution of the time-resolved photoemission response of the spinless Falicov-Kimball model driven out of equilibrium by strong applied fields. The model is one of the few possessing a metal-insulator transition and admitting an exact solution in the time domain. The nonequilibrium dynamics, evaluated using an extension of dynamical mean-field theory, show how the driven system differs from two common viewpoints - a quasiequilibrium system at an elevated effective temperature (the hot electron model) or a rapid interaction quench (melting of the Mott gap) - due to the rearrangement of electronic states and redistribution of spectral weight. The results demonstrate the inherent trade-off between energy and time resolution accompanying the finite width probe pulses, characteristic of those employed in pump-probe time-domain experiments, which can be used to focus attention on different aspects of the dynamics near the transition.
Using a Luttinger liquid theory we investigate the time evolution of the particle density of a one-dimensional fermionic system with open boundaries and subject to a finite duration quench of the inter-particle interaction. We provide analytical and asymptotic solutions to the unitary time evolution of the system, showing that both switching on and switching off the quench ramp create light-cone perturbations in the density. The post-quench dynamics is strongly affected by the interference between these two perturbations. In particular, we find that the discrepancy between the time-dependent density and the one obtained by a generalized Gibbs ensemble picture vanishes with an oscillatory behavior as a function of the quench duration, with local minima corresponding to a perfect overlap of the two light-cone perturbations. For adiabatic quenches, we also obtain a similar behavior in the approach of the generalized Gibbs ensemble density towards the one associated with the ground state of the final Hamiltonian.
Using a Luttinger liquid theory we investigate the time evolution of the particle density of a one-dimensional spinful fermionic system with open boundaries and subject to a finite-duration quench of the inter-particle interaction. Taking into account also the turning on of an umklapp perturbation to the system Hamiltonian as a result of the quench, we study the possible formation of a Wigner molecule inside the system, focusing in particular on the sudden and adiabatic regimes. We show that the creation of this correlated state is essentially due to the propagation of light-cone perturbations through system which arise after both switching on and switching off the quenching protocol and that its behavior strongly depends on the quench duration.
We investigate the temporal evolution of electronic states in strontium iridate Sr$_2$IrO$_4$. The time resolved photoemission spectra of intrinsic, electron doped and the hole doped samples are monitored in identical experimental conditions. Our data on intrinsic and electron doped samples, show that primary doublon-holon pairs relax near to the chemical potential on a timescale shorter than $70$ fs. The subsequent cooling of low energy excitations takes place in two step: a rapid dynamics of $cong120$ fs is followed by a slower decay of $cong 1$ ps. The reported timescales endorse the analogies between Sr$_2$IrO$_4$ and copper oxides.
Atom counting theory can be used to study the role of thermal noise in quantum phase transitions and to monitor the dynamics of a quantum system. We illustrate this for a strongly correlated fermionic system, which is equivalent to an anisotropic quantum XY chain in a transverse field, and can be realized with cold fermionic atoms in an optical lattice. We analyze the counting statistics across the phase diagram in the presence of thermal fluctuations, and during its thermalization when the system is coupled to a heat bath. At zero temperature, the quantum phase transition is reflected in the cumulants of the counting distribution. We find that the signatures of the crossover remain visible at low temperature and are obscured with increasing thermal fluctuations. We find that the same quantities may be used to scan the dynamics during the thermalization of the system.
In pump-probe time and angle-resolved photoemission spectroscopy (TR-ARPES) experiments the presence of the pump pulse adds a new level of complexity to the photoemission process in comparison to conventional ARPES. This is evidenced by pump-induced vacuum space-charge effects and surface photovoltages, as well as multiple pump excitations due to internal reflections in the sample-substrate system. These processes can severely affect a correct interpretation of the data by masking the out-of-equilibrium electron dynamics intrinsic to the sample. In this study, we show that such effects indeed influence TR-ARPES data of graphene on a silicon carbide (SiC) substrate. In particular, we find a time- and laser fluence-dependent spectral shift and broadening of the acquired spectra, and unambiguously show the presence of a double pump excitation. The dynamics of these effects is slower than the electron dynamics in the graphene sample, thereby permitting us to deconvolve the signals in the time domain. Our results demonstrate that complex pump-related processes should always be considered in the experimental setup and data analysis.