Do you want to publish a course? Click here

On the Amenability of Compact and Discrete Hypergroup Algebras

113   0   0.0 ( 0 )
 Added by Ahmadreza Azimifard
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

Let $K$ be a commutative compact hypergroup and $L^1(K)$ the hypergroup algebra. We show that $L^1(K)$ is amenable if and only if $pi_K$, the Plancherel weight on the dual space $widehat{K}$, is bounded. Furthermore, we show that if $K$ is an infinite discrete hypergroup and there exists $alphain widehat{K}$ which vanishes at infinity, then $L^1(K)$ is not amenable. In particular, $L^1(K)$ fails to be even $alpha$-left amenable if $pi_K({alpha})=0$.



rate research

Read More

221 - Ahmadreza Azimifard 2008
Associated to a nonzero homomorphism $varphi$ of a Banach algebra $A$, we regard special functionals, say $m_varphi$, on certain subspaces of $A^ast$ which provide equivalent statements to the existence of a bounded right approximate identity in the corresponding maximal ideal in $A$. For instance, applying a fixed point theorem yields an equivalent statement to the existence of a $m_varphi$ on $A^ast$; and, in addition we expatiate the case that if a functional $m_varphi$ is unique, then $m_varphi$ belongs to the topological center of the bidual algebra $A^{astast}$. An example of a function algebra, surprisingly, contradicts a conjecture that a Banach algebra $A$ is amenable if $A$ is $varphi$-amenable in every character $varphi$ and if functionals $m_varphi$ associated to the characters $varphi$ are uniformly bounded. Aforementioned are also elaborated on the direct sum of two given Banach algebras.
167 - Mahya Ghandehari 2011
Rajchman measures of locally compact Abelian groups are studied for almost a century now, and they play an important role in the study of trigonometric series. Eymards influential work allowed generalizing these measures to the case of emph{non-Abelian} locally compact groups $G$. The Rajchman algebra of $G$, which we denote by $B_0(G)$, is the set of all elements of the Fourier-Stieltjes algebra that vanish at infinity. In the present article, we characterize the locally compact groups that have amenable Rajchman algebras. We show that $B_0(G)$ is amenable if and only if $G$ is compact and almost Abelian. On the other extreme, we present many examples of locally compact groups, such as non-compact Abelian groups and infinite solvable groups, for which $B_0(G)$ fails to even have an approximate identity.
192 - Ariel Blanco 2008
We give a necessary and sufficient condition for amenability of the Banach algebra of approximable operators on a Banach space. We further investigate the relationship between amenability of this algebra and factorization of operators, strengthening known results and developing new techniques to determine whether or not a given Banach space carries an amenable algebra of approximable operators. Using these techniques, we are able to show, among other things, the non-amenability of the algebra of approximable operators on Tsirelsons space.
The pseudo-amenability of Brandt Banach semigroup algebras is considered.
Let G be a locally compact group, and ZL1(G) be the centre of its group algebra. We show that when $G$ is compact ZL1(G) is not amenable when G is either nonabelian and connected, or is a product of infinitely many finite nonabelian groups. We also, study, for some non-compact groups G, some conditions which imply amenability and hyper-Tauberian property, for ZL1(G).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا