In this paper, we introduce a real-space renormalization transformation for random spin systems on 2D lattices. The general method is formulated for random systems and results from merging two well known real space renormalization techniques, namely the strong disorder renormalization technique (SDRT) and the contractor renormalization (CORE). We analyze the performance of the method on the 2D random transverse field Ising model (RTFIM).
Entanglement is a physical resource of a quantum system just like mass, charge or energy. Moreover it is an essential tool for many purposes of nowadays quantum information processing, e.g. quantum teleportation, quantum cryptography or quantum computation. In this work we investigate an extended system of N qubits. In our system a qubit is the absence or presence of an electron at a site of a tight-binding system. Several measures of entanglement between a given qubit and the rest of the system and also the entanglement between two qubits and the rest of the system is calculated in a one-electron picture in the presence of disorder. We invoke the power law band random matrix model which even in one dimension is able to produce multifractal states that fluctuate at all length scales. The concurrence, the tangle and the entanglement entropy all show interesting scaling properties.
In view of the recently seen dramatic effect of quenched random bonds on tricritical systems, we have conducted a renormalization-group study on the effect of quenched random fields on the tricritical phase diagram of the spin-1 Ising model in $d=3$. We find that random fields convert first-order phase transitions into second-order, in fact more effectively than random bonds. The coexistence region is extremely flat, attesting to an unusually small tricritical exponent $beta_u$; moreover, an extreme asymmetry of the phase diagram is very striking. To accomodate this asymmetry, the second-order boundary exhibits reentrance.
We investigate the possibility to control localization properties of the asymptotic state of an open quantum system with a tunable synthetic dissipation. The control mechanism relies on the matching between properties of dissipative operators, acting on neighboring sites and specified by a single control parameter, and the spatial phase structure of eigenstates of the system Hamiltonian. As a result, the latter coincide (or near coincide) with the dark states of the operators. In a disorder-free Hamiltonian with a flat band, one can either obtain a localized asymptotic state or populate whole flat and/or dispersive bands, depending on the value of the control parameter. In a disordered Anderson system, the asymptotic state can be localized anywhere in the spectrum of the Hamiltonian. The dissipative control is robust with respect to an additional local dephasing.
It is known that strong disorder in closed quantum systems leads to many-body localization (MBL), and that this quantum phase can be destroyed by coupling to an infinitely large Markovian environment. However, the stability of the MBL phase is less clear when the system and environment are of finite and comparable size. Here, we study the stability and eventual localization properties of a disordered Heisenberg spin chain coupled to a finite environment, and extensively explore the effects of environment disorder, geometry, initial state and system-bath coupling strength. Our numerical results indicate that in most cases, the system retains its localization properties despite the coupling to the finite environment, albeit to a reduced extent. However, in cases where the system and environment is strongly coupled in the ladder configuration, the eventual localization properties are highly dependent on the initial state, and could lead to either thermalization or localization.
We develop a time-dependent real-space renormalization-group approach which can be applied to Hamiltonians with time-dependent random terms. To illustrate the renormalization-group analysis, we focus on the quantum Ising Hamiltonian with random site- and time-dependent (adiabatic) transverse-field and nearest-neighbour exchange couplings. We demonstrate how the method works in detail, by calculating the off-critical flows and recovering the ground state properties of the Hamiltonian such as magnetization and correlation functions. The adiabatic time allows us to traverse the parameter space, remaining near-to the ground state which is broadened if the rate of change of the Hamiltonian is finite. The quantum critical point, or points, depend on time through the time-dependence of the parameters of the Hamiltonian. We, furthermore, make connections with Kibble-Zurek dynamics and provide a scaling argument for the density of defects as we adiabatically pass through the critical point of the system.