Do you want to publish a course? Click here

Early Black Hole Formation by Accretion of Gas and Dark Matter

122   0   0.0 ( 0 )
 Added by Naoki Yoshida
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a model in which intermediate-mass black holes (IMBHs) with mass of ~10000 Msun are formed in early dark matter halos. We carry out detailed stellar evolution calculations for accreting primordial stars including annihilation energy of dark matter particles. We follow the stellar core evolution consistently up to gravitational collapse. We show that very massive stars, as massive as 10000 Msun, can be formed in an early dark matter halo. Such stars are extremely bright with Log L/Lsun > 8.2. They gravitationally collapse to form IMBHs. These black holes could have seeded the formation of early super-massive blackholes.



rate research

Read More

Black holes with masses of $rm 10^6-10^9~M_{odot}$ dwell in the centers of most galaxies, but their formation mechanisms are not well known. A subdominant dissipative component of dark matter with similar properties to the ordinary baryons, known as mirror dark matter, may collapse to form massive black holes during the epoch of first galaxies formation. In this study, we explore the possibility of massive black hole formation via this alternative scenario. We perform three-dimensional cosmological simulations for four distinct halos and compare their thermal, chemical and dynamical evolution in both the ordinary and the mirror sectors. We find that the collapse of halos is significantly delayed in the mirror sector due to the lack of $rm H_2$ cooling and only halos with masses above $ rm geq 10^7~ M_{odot}$ are formed. Overall, the mass inflow rates are $rm geq 10^{-2}~M_{odot}/yr$ and there is less fragmentation. This suggests that the conditions for the formation of massive objects, including black holes, are more favorable in the mirror sector.
The dark matter (DM) can consist of the primordial black holes (PBHs) in addition to the conventional weakly interacting massive particles (WIMPs). The Poisson fluctuations of the PBH number density produce the isocurvature perturbations which can dominate the matter power spectrum at small scales and enhance the early structure formation. We study how the WIMP annihilation from those early formed structures can affect the CMB (in particular the E-mode polarization anisotropies and $y$-type spectral distortions) and global 21cm signals. Our studies would be of particular interest for the light (sub-GeV) WIMP scenarios which have been less explored compared with the mixed DM scenarios consisting of PBHs and heavy ($gtrsim 1$ GeV) WIMPs. For instance, for the self-annihilating DM mass $m_{chi}=1$ MeV and the thermally averaged annihilation cross section $langle sigma v rangle sim 10^{-30} rm cm^3/s$, the latest Planck CMB data requires the PBH fraction with respect to the whole DM to be at most ${cal O}(10^{-3})$ for the sub-solar mass PBHs and an even tighter bound (by a factor $sim 5$) can be obtained from the global 21-cm measurements.
We investigate a possibility of primordial black hole (PBH) formation with a hierarchical mass spectrum in multiple phases of inflation. As an example, we find that one can simultaneously realize a mass spectrum which has recently attracted a lot of attention: stellar-mass PBHs ($simmathcal{O}(10)M_odot$) as a possible source of binary black holes detected by LIGO/Virgo collaboration, asteroid-mass ($simmathcal{O}(10^{-12})M_odot$) as a main component of dark matter, and earth-mass ($simmathcal{O}(10^{-5})M_odot$) as a source of ultrashort-timescale events in Optical Gravitational Lensing Experiment microlensing data. The recent refined de Sitter swampland conjecture may support such a multi-phase inflationary scenario with hierarchical mass PBHs as a transition signal of each inflationary phase.
Seven observations point towards the existence of primordial black holes (PBH), constituting the whole or an important fraction of the dark matter in the Universe: the mass and spin of black holes detected by Advanced LIGO/VIRGO, the detection of micro-lensing events of distant quasars and stars in M31, the non-detection of ultra-faint dwarf satellite galaxies with radius below 15 parsecs, evidences for core galactic dark matter profiles, the correlation between X-ray and infrared cosmic backgrounds, and the existence of super-massive black holes very early in the Universes history. Some of these hints are newly identified and they are all intriguingly compatible with the re-constructed broad PBH mass distribution from LIGO events, peaking on PBH mass $m_{rm PBH} approx 3 M_odot$ and passing all other constraints on PBH abundances. PBH dark matter also provides a new mechanism to explain the mass-to-light ratios of dwarf galaxies, including the recent detection of a diffuse galaxy not dominated by dark matter. Finally we conjecture that between 0.1% and 1% of the events detected by LIGO will involve a PBH with a mass below the Chandrasekhar mass, which would unambiguously prove the existence of PBH.
We revisit cosmic microwave background (CMB) constraints on primordial black hole dark matter. Spectral distortion limits from COBE/FIRAS do not impose a relevant constraint. Planck CMB anisotropy power spectra imply that primordial black holes with $m_{BH}gtrsim 5~M_{odot}$ are disfavored. However, this is susceptible to sizeable uncertainties due to the treatment of the black hole accretion process. These constraints are weaker than those quoted in earlier literature for the same observables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا