Do you want to publish a course? Click here

On Fibonacci Knots

132   0   0.0 ( 0 )
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We show that the Conway polynomials of Fibonacci links are Fibonacci polynomials modulo 2. We deduce that, when $ n otequiv 0 Mod 4$ and $(n,j) eq (3,3),$ the Fibonacci knot $ cF_j^{(n)} $ is not a Lissajous knot.



rate research

Read More

291 - Jianfeng Lin 2013
A surgery on a knot in 3-sphere is called SU(2)-cyclic if it gives a manifold whose fundamental group has no non-cyclic SU(2) representations. Using holonomy perturbations on the Chern-Simons functional, we prove that the distance of two SU(2)-cyclic surgery coefficients is bounded by the sum of the absolute values of their numerators. This is an analog of Culler-Gordon-Luecke-Shalens cyclic surgery theorem.
In this article, we introduce rack invariants of oriented Legendrian knots in the 3-dimensional Euclidean space endowed with the standard contact structure, which we call Legendrian racks. These invariants form a generalization of the quandle invariants of knots. These rack invariants do not result in a complete invariant, but detect some of the geometric properties such as cusps in a Legendrian knot. In the case of topologically trivial Legendrian knots, we test this family of invariants for its strengths and limitations. We further prove that these invariants form a natural generalization of the quandle invariant, by which we mean that any rack invariant under certain restrictions is equivalent to a Legendrian rack. The axioms of these racks are expressible in first order logic, and were discovered through a series of experiments using an automated theorem prover for first order logic. We also present the results from the experiments on Legendrian unknots involving auto-mated theorem provers, and describe how they led to our current formulation.
For a virtual knot $K$ and an integer $rgeq 0$, the $r$-covering $K^{(r)}$ is defined by using the indices of chords on a Gauss diagram of $K$. In this paper, we prove that for any finite set of virtual knots $J_0,J_2,J_3,dots,J_m$, there is a virtual knot $K$ such that $K^{(r)}=J_r$ $(r=0mbox{ and }2leq rleq m)$, $K^{(1)}=K$, and otherwise $K^{(r)}=J_0$.
109 - Zhenkun Li , Yi Xie , 2021
Suppose $(M, gamma)$ is a balanced sutured manifold and $K$ is a rationally null-homologous knot in $M$. It is known that the rank of the sutured Floer homology of $Mbackslash N(K)$ is at least twice the rank of the sutured Floer homology of $M$. This paper studies the properties of $K$ when the equality is achieved for instanton homology. As an application, we show that if $Lsubset S^3$ is a fixed link and $K$ is a knot in the complement of $L$, then the instanton link Floer homology of $Lcup K$ achieves the minimum rank if and only if $K$ is the unknot in $S^3backslash L$.
A Chebyshev knot is a knot which admits a parametrization of the form $ x(t)=T_a(t); y(t)=T_b(t) ; z(t)= T_c(t + phi), $ where $a,b,c$ are pairwise coprime, $T_n(t)$ is the Chebyshev polynomial of degree $n,$ and $phi in RR .$ Chebyshev knots are non compact analogues of the classical Lissajous knots. We show that there are infinitely many Chebyshev knots with $phi = 0.$ We also show that every knot is a Chebyshev knot.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا