No Arabic abstract
Cosmology with Type Ia supernovae heretofore has required extensive spectroscopic follow-up to establish a redshift. Though tolerable at the present discovery rate, the next generation of ground-based all-sky survey instruments will render this approach unsustainable. Photometry-based redshift determination is a viable alternative, but introduces non-negligible errors that ultimately degrade the ability to discriminate between competing cosmologies. We present a strictly template-based photometric redshift estimator and compute redshift reconstruction errors in the presence of photometry and statistical errors. With reasonable assumptions for a cadence and supernovae distribution, these redshift errors are combined with systematic errors and propagated using the Fisher matrix formalism to derive lower bounds on the joint errors in $Omega_w$ and $Omega_w$ relevant to the next generation of ground-based all-sky survey.
Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts $(zgtrsim 2)$, probe potential SN Ia evolution, and deliver high-precision constraints on $H_0$, $w$, and $Omega_m$ via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. AGN, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse supernovae will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that LSST can discover up to 500 multiply imaged SNe Ia using this technique in a 10-year $z$-band search, more than an order of magnitude improvement over previous estimates (Oguri & Marshall 2010). We also predict that ZTF should find up to 10 multiply imaged SNe Ia using this technique in a 3-year $R$-band search---despite the fact that this survey will not resolve a single system.
Type Ia supernovae are bright stellar explosions distinguished by standardizable light curves that allow for their use as distance indicators for cosmological studies. Despite their highly successful use in this capacity, the progenitors of these events are incompletely understood. We describe simulating type Ia supernovae in the paradigm of a thermonuclear runaway occurring in a massive white dwarf star. We describe the multi-scale physical processes that realistic models must incorporate and the numerical models for these that we employ. In particular, we describe a flame-capturing scheme that addresses the problem of turbulent thermonuclear combustion on unresolved scales. We present the results of our study of the systematics of type Ia supernovae including trends in brightness following from properties of the host galaxy that agree with observations. We also present performance results from simulations on leadership-class architectures.
There is compelling evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Ye at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejecta in Type Ia supernovae. In particular, we suggest the abundances generated in quasi nuclear statistical equilibrium are preserved during the subsequent freezeout. This allows one to potential recovery of Ye at explosion from the abundances recovered from an observed spectra. We show that measurement of 28Si, 32S, 40Ca, and 54Fe abundances can be used to construct Ye in the silicon rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Ye to 6 percent. This is because these isotopes dominate the composition of silicon-rich material and iron rich material in quasi nuclear statistical equilibrium. Analytical analysis shows that the 28Si abundance is insensitive to Ye, the 32S abundance has a nearly linear trend with Ye, and the 40Ca abundance has a nearly quadratic trend with Ye. We verify these trends with post-processing of 1D models and show that these trends are reflected in model synthetic spectra.
Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here we present the first study of a sample of high signal-to-noise ratio SN Ia spectra that extend blueward of 2900 A. We focus on spectra taken within 5 days of maximum brightness. Our sample of ten SNe Ia spans the majority of the parameter space of SN Ia optical diversity. We find that SNe Ia have significantly more diversity in the UV than in the optical, with the spectral variance continuing to increase with decreasing wavelengths until at least 1800 A (the limit of our data). The majority of the UV variance correlates with optical light-curve shape, while there are no obvious and unique correlations between spectral shape and either ejecta velocity or host-galaxy morphology. Using light-curve shape as the primary variable, we create a UV spectral model for SNe Ia at peak brightness. With the model, we can examine how individual SNe vary relative to expectations based on only their light-curve shape. Doing this, we confirm an excess of flux for SN 2011fe at short wavelengths, consistent with its progenitor having a subsolar metallicity. While most other SNe Ia do not show large deviations from the model, ASASSN-14lp has a deficit of flux at short wavelengths, suggesting that its progenitor was relatively metal rich.
Type Ia supernovae (SNe Ia) are manifestations of stars deficient of hydrogen and helium disrupting in a thermonuclear runaway. While explosions of carbon-oxygen white dwarfs are thought to account for the majority of events, part of the observed diversity may be due to varied progenitor channels. We demonstrate that helium stars with masses between $sim$1.8 and 2.5 M$_{odot}$ may evolve into highly degenerate, near-Chandrasekhar mass cores with helium-free envelopes that subsequently ignite carbon and oxygen explosively at densities $sim(1.8-5.9)times 10^{9}$g cm$^{-3}$. This happens either due to core growth from shell burning (when the core has a hybrid CO/NeO composition), or following ignition of residual carbon triggered by exothermic electron captures on $^{24}$Mg (for a NeOMg-dominated composition). We argue that the resulting thermonuclear runaways is likely to prevent core collapse, leading to the complete disruption of the star. The available nuclear energy at the onset of explosive oxygen burning suffices to create ejecta with a kinetic energy of $sim$10$^{51}$ erg, as in typical SNe Ia. Conversely, if these runaways result in partial disruptions, the corresponding transients would resemble SN Iax events similar to SN 2002cx. If helium stars in this mass range indeed explode as SNe Ia, then the frequency of events would be comparable to the observed SN Ib/c rates, thereby sufficing to account for the majority of SNe Ia in star-forming galaxies.