Do you want to publish a course? Click here

zCOSMOS - 10k-bright spectroscopic sample. The bimodality in the Galaxy Stellar Mass Function: exploring its evolution with redshift

178   0   0.0 ( 0 )
 Added by Lucia Pozzetti
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the Galaxy Stellar Mass Function (MF) up to z~1 from the zCOSMOS-bright 10k spectroscopic sample. We investigate the total MF and the contribution of ETGs and LTGs, defined by different criteria (SED, morphology or star formation). We unveil a galaxy bimodality in the global MF, better represented by 2 Schechter functions dominated by ETGs and LTGs, respectively. For the global population we confirm that low-mass galaxies number density increases later and faster than for massive galaxies. We find that the MF evolution at intermediate-low values of Mstar (logM<10.6) is mostly explained by the growth in stellar mass driven by smoothly decreasing star formation activities. The low residual evolution is consistent with ~0.16 merger per galaxy per Gyr (of which fewer than 0.1 are major). We find that ETGs increase in number density with cosmic time faster for decreasing Mstar, with a median building redshift increasing with mass, in contrast with hierarchical models. For LTGs we find that the number density of blue or spiral galaxies remains almost constant from z~1. Instead, the most extreme population of active star forming galaxies is rapidly decreasing in number density. We suggest a transformation from blue active spirals of intermediate mass into blue quiescent and successively (1-2 Gyr after) into red passive types. The complete morphological transformation into red spheroidals, required longer time-scales or follows after 1-2 Gyr. A continuous replacement of blue galaxies is expected by low-mass active spirals growing in stellar mass. We estimate that on average ~25% of blue galaxies is transforming into red per Gyr for logM<11. We conclude that the build-up of galaxies and ETGs follows the same downsizing trend with mass as the formation of their stars, converse to the trend predicted by current SAMs. We expect a negligible evolution of the global Galaxy Baryonic MF.



rate research

Read More

We present the analysis of the U-V rest-frame color distribution and some spectral features as a function of mass and environment for two sample of early-type galaxies up to z=1 extracted from the zCOSMOS spectroscopic survey. The first sample (red galaxies) is defined with a photometric classification, while the second (ETGs) by combining morphological, photometric, and spectroscopic properties to obtain a more reliable sample. We find that the color distribution of red galaxies is not strongly dependent on environment for all mass bins, with galaxies in overdense regions redder than galaxies in underdense regions with a difference of 0.027pm0.008 mag. The dependence on mass is far more significant, with average colors of massive galaxies redder by 0.093pm0.007 mag than low-mass galaxies throughout the entire redshift range. We study the color-mass relation, finding a mean slope 0.12pm0.005, while the color-environment relation is flatter, with a slope always smaller than 0.04. The spectral analysis that we perform on our ETGs sample is in good agreement with our photometric results: we find for D4000 a dependence on mass between high and low-mass galaxies, and a much weaker dependence on environment (respectively a difference of of 0.11pm0.02 and of 0.05pm0.02); for the equivalent width of H{delta}we measure a difference of 0.28pm0.08 {AA}across the same mass range and no significant dependence on environment.By analyzing the lookback time of early-type galaxies, we support the possibility of a downsizing scenario, in which massive galaxies with a stronger D4000 and an almost constant equivalent width of $Hdelta$ formed their mass at higher redshift than lower mass ones. We also conclude that the main driver of galaxy evolution is the galaxy mass, the environment playing a subdominant role.
We study the impact of the environment on the evolution of galaxies in the zCOSMOS 10k sample in the redshift range 0.1<z<1.0 over an area of ~1.5 deg2. The considered sample of secure spectroscopic redshifts contains about 8500 galaxies, with their stellar masses estimated by SED fitting of the multiwavelength optical to NIR photometry. The evolution of the galaxy stellar mass function (GSMF) in high and low density regions provides a tool to study the mass assembly evolution in different environments; moreover, the contributions to the GSMF from different galaxy types, as defined by their SEDs and their morphologies, can be quantified. At redshift z~1, the GSMF is only slightly dependent on environment, but at lower redshifts the shapes of the GSMFs in high- and low-density environments become extremely different, with high density regions exhibiting a marked bimodality. As a result, we infer that galaxy evolution depends on both the stellar mass and the environment, the latter setting the probability of a galaxy to have a given mass: all the galaxy properties related to the stellar mass show a dependence on environment, reflecting the difference observed in the mass functions. The shapes of the GSMFs of early- and late-type galaxies are almost identical for the extremes of the density contrast we consider. The evolution toward z=0 of the mass at which the early- and late-type GSMFs match each other is more rapid in high density environments. The comparison of the observed GSMFs to the same quantities derived from a set of mock catalogues shows that blue galaxies in sparse environments are overproduced in the semi-analytical models at intermediate and high masses, because of a deficit of star formation suppression, while at z<0.5 an excess of red galaxies is present in dense environments at intermediate and low masses, because of the overquenching of satellites. ABRIDGED
313 - O. Cucciati , A. Iovino , K. Kovac 2010
[Abridged] With the first 10000 spectra of the flux limited zCOSMOS sample (I<=22.5) we study the evolution of environmental effects on galaxy properties since z=1.0, and disentangle the dependence among galaxy colour, stellar mass and local density (3D local density contrast `delta, computed with the 5th nearest neighbour approach). We confirm that within a luminosity-limited sample (M_B<=-20.5-z) the fraction of red (U-B>=1) galaxies f_red depends on delta at least up to z=1, with red galaxies residing mainly in high densities. This trend weakens for increasing z, and it is mirrored by the behaviour of the fraction of galaxies with D4000A break >=1.4. We also find that up to z=1 the fraction of galaxies with log(EW[OII]) >=1.15 is higher for lower delta, and also this dependence weakens for increasing z. Given the triple dependence among galaxy colours, stellar mass and delta, the colour-delta relation found in the luminosity-selected sample can be due to the broad range of stellar masses. Thus, we fix the stellar mass and we find that in this case the colour-delta relation is flat up to z=1 for galaxies with log(M/M_sun)>=10.7. This means that for these masses the colour-delta relation found in a luminosity-selected sample is the result of the combined colour-mass and mass-delta relations. In contrast, we find that for 0.1<=z<=0.5 and log(M/M_sun)<=10.7 f_red depends on delta even at fixed mass. In these mass and z ranges, environment affects directly also galaxy colours. We suggest a scenario in which the colour depends primarily on stellar mass, but for relatively low mass galaxies the local density modulates this dependence. These galaxies formed more recently, in an epoch when evolved structures were already in place, and their longer SFH allowed environment-driven physical processes to operate during longer periods of time.
Our goal is to develop a new and reliable statistical method to classify galaxies from large surveys. We probe the reliability of the method by comparing it with a three-dimensional classification cube, using the same set of spectral, photometric and morphological parameters.We applied two different methods of classification to a sample of galaxies extracted from the zCOSMOS redshift survey, in the redshift range 0.5 < z < 1.3. The first method is the combination of three independent classification schemes, while the second method exploits an entirely new approach based on statistical analyses like Principal Component Analysis (PCA) and Unsupervised Fuzzy Partition (UFP) clustering method. The PCA+UFP method has been applied also to a lower redshift sample (z < 0.5), exploiting the same set of data but the spectral ones, replaced by the equivalent width of H$alpha$. The comparison between the two methods shows fairly good agreement on the definition on the two main clusters, the early-type and the late-type galaxies ones. Our PCA-UFP method of classification is robust, flexible and capable of identifying the two main populations of galaxies as well as the intermediate population. The intermediate galaxy population shows many of the properties of the green valley galaxies, and constitutes a more coherent and homogeneous population. The fairly large redshift range of the studied sample allows us to behold the downsizing effect: galaxies with masses of the order of $3cdot 10^{10}$ Msun mainly are found in transition from the late type to the early type group at $z>0.5$, while galaxies with lower masses - of the order of $10^{10}$ Msun - are in transition at later epochs; galaxies with $M <10^{10}$ Msun did not begin their transition yet, while galaxies with very large masses ($M > 5cdot 10^{10}$ Msun) mostly completed their transition before $zsim 1$.
193 - Benedetta Vulcani 2011
We present the analysis of the galaxy stellar mass function in different environments at intermediate redshift (0.3<z<0.8) for two mass-limited galaxy samples. We use the IMACS Cluster Building Survey (ICBS), at masses M_ast >10^(10.5) M_sun, to study cluster, group, and field galaxies at z=0.3-0.45, and the ESO Distant Cluster Survey (EDisCS), at masses M_ast > 10^(10.2) M_sun, to investigate cluster and group galaxies at z=0.4-0.8. Therefore, in our analysis we include galaxies that are slightly less massive than the Milky Way. Having excluded the brightest cluster galaxies, we show thatthe shape of the mass distribution does not seem to depend on global environment. Our two main results are: (1) Galaxies in the virialized regions of clusters, in groups, and in the field follow a similar mass distribution. (2) Comparing both ICBS and EDisCS mass functions to mass functions in the local Universe, we find evolution from z~0.4-0.6 to z~0.07. The population of low-mass galaxies has proportionally grown with time with respect to that of massive galaxies. This evolution is independent of environment -- the same for clusters and the field. Furthermore, considering only clusters, we find that no differences can be detected neither within the virialized regions, nor when we compare galaxies within and outside the virial radius. Subdividing galaxies in terms of color, in clusters, groups, and field red and blue galaxies are regulated by different mass functions, but comparing separately the blue and red mass functions in different environments, no differences are detected in their shape.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا