Development of relativistic shock waves in viscous gluon matter


Abstract in English

To investigate the formation and the propagation of relativistic shock waves in viscous gluon matter we solve the relativistic Riemann problem using a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio $eta/s$. We show that an $eta/s$ ratio larger than 0.2 prevents the development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions. These findings are confirmed by viscous hydrodynamic calculations.

Download