Arrested Kondo effect and hidden order in URu_2Si_2


Abstract in English

Complex electronic matter exhibit subtle forms of self organization which are almost invisible to the available experimental tools, but which have dramatic physical consequences. One prominent example is provided by the actinide based heavy fermion material URu_2Si_2. At high temperature, the U-5f electrons in URu_2Si_2 carry a very large entropy. This entropy is released at 17.5K via a second order phase transition to a state which remains shrouded in mystery, and which was termed a hidden order state. Here we develop a first principles theoretical method to analyze the electronic spectrum of correlated materials as a function of the position inside the unit cell of the crystal, and use it to identify the low energy excitations of the URu_2Si_2. We identify the order parameter of the hidden order state, and show that it is intimately connected with magnetism. We present first principles results for the temperature evolution of the electronic states of the material. At temperature below 70K U-5f electrons undergo a multichannel Kondo effect, which is arrested at low temperature by the crystal field splitting. At lower temperatures, two broken symmetry states emerge, characterized by a complex order parameter psi. A real $psi$ describes the hidden order phase, and an imaginary psi corresponds to the large moment antiferromagnetic phase, thus providing a unified picture of the two broken symmetry phases, which are realized in this material.

Download